PETROLEUM COKE: A 48-HOUR STATIC-RENEWAL ACUTE IMMOBILISATION TEST WITH THE CLADOCERAN (*Daphnia magna*)

AMENDED FINAL REPORT

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-112

OECD GUIDELINE 202 and U.S. EPA OPPTS NUMBER 850.1010

AUTHORS:

STUDY INITIATION DATE: April 22, 2004

STUDY COMPLETION DATE: June 22, 2006

AMENDED REPORT DATE: April 10, 2007

SUBMITTED TO:

American Petroleum Institute 1220 L Street, N.W. Washington, DC 20005

Wildlife International, Ltd.

8598 Commerce Drive Easton, Maryland 21601 USA (410) 822-8600

Page 1 of 159

-2-

GOOD LABORATORY PRACTICE COMPLIANCE STATEMENT

SPONSOR: American Petroleum Institute

TITLE: Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test with the Cladoceran (Daphnia magna)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-112

STUDY COMPLETION: June 22, 2006

AMENDED FINAL REPORT: April 10, 2007

This study was conducted in compliance with OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98)17) (1); and TSCA Good Laboratory Practice Standards (40 CFR Part 792) (2), with the following exceptions:

The characterization of the test and reference substances, and the stability of the substances under conditions of storage at the test site, were not determined in compliance with Good Laboratory Practice Standards.

Periodic analyses of well water for potential contaminants were performed using a certified laboratory and standard U.S. EPA analytical methods, but not under Good Laboratory Practice Standards.

STUDY DIRECTOR:

10 April 2007
Date

4/26/2007 Date

Wildlife International, Ltd.

SPONSOR:

American Petroleum Institute, by:

- 3 -

QUALITY ASSURANCE STATEMENT

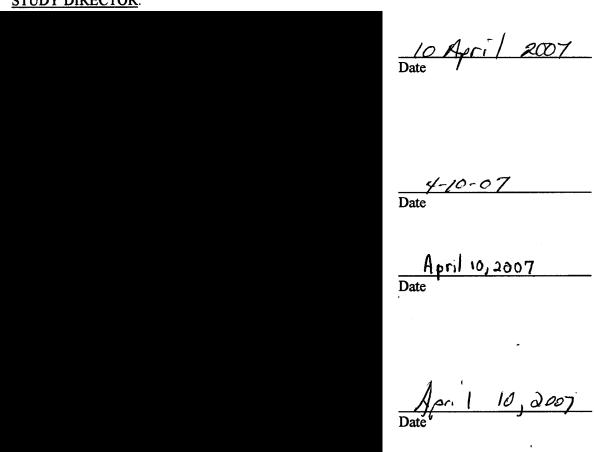
This study was examined for compliance with OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98)17) (1); and TSCA Good Laboratory Practice Standards (40 CFR Part 792) (2). The dates of all inspections and audits and the dates that any findings were reported to the Study Director and Laboratory Management were as follows:

		DATE REP	ORTED TO:
ACTIVITY:	DATE CONDUCTED:	STUDY DIRECTOR:	MANAGEMENT:
Protocol	May 3, 2004	May 3, 2004	May 6, 2004
Test Substance Preparation	March 21, 2005	March 21, 2005	March 22, 2005
Sample Preparation	March 22, 2005	March 22, 2005	March 28, 2005
Analytical Sampling and Temperature Measurements	March 23, 2005	March 23, 2005	March 28, 2005
Analytical Data and Draft Report	June 6 – 8, 2005	June 8, 2005	June 9, 2005
Biological Data and Draft Report	June 9, 2005	June 9, 2005	June 9, 2005
Final Report	June 19, 2006	June 19, 2006	June 22, 2006
Amended Report	April 9, 2007	April 9, 2007	April 9, 2007

All inspections were study-based unless otherwise noted.

4/10/2007 Date -4-

AMENDED REPORT APPROVAL


SPONSOR: American Petroleum Institute

TITLE: Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test with the Cladoceran (Daphnia magna)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-112

This report was reviewed by the individuals involved in the conduct and management of the study, and was found to be an accurate reflection of the methods used, data collected and results of the study.

STUDY DIRECTOR:

TABLE OF CONTENTS

Title/Cover Page	1
Good Laboratory Practice Compliance Statement	2
Quality Assurance Statement	3
Report Approval	
Table of Contents	
Summary	9
Introduction	10
Objective	10
Experimental Design	10
Materials and Methods	
Test Substance	
Reference Substances	
Test Organism	13
Dilution Water	14
Test Apparatus	
Preparation of Test Concentrations	15
Analy tical Sampling	
Analytical Method by HPLC	16
Analytical Method by ICP-AES	
Environm ental Conditions	18
Observations	19
Conditions for the Validity of the Test	19
Data Analyses	19
Results and Discussion	
Measurement of Test Concentrations	
Observations and Measurements	20
Conclusions	20
Dafaranaas	2.1

- 6 -

TABLE OF CONTENTS (Continued)

TABLES

Table 1.	Measured Concentrations of Naphthalene Analyzed by HPLC/UV	22
Table 2.	Measured Concentrations of Acenaphthylene Analyzed by HPLC/UV	23
Table 3.	Measured Concentrations of 1-Methylnaphthalene Analyzed by HPLC/UV	24
Table 4.	Measured Concentrations of 2-Methylnaphthalene Analyzed by HPLC/UV	25
Table 5.	Measured Concentrations of Fluorene Analyzed by HPLC/UV	26
Table 6.	Measured Concentrations of Acenaphthene Analyzed by HPLC/UV	27
Table 7.	Measured Concentrations of Phenanthrene Analyzed by HPLC/UV	28
Table 8.	Measured Concentrations of Anthracene Analyzed by HPLC with Fluorescence Detection	29
Table 9. Fluorescer	Measured Concentrations of Fluoranthene Analyzed by HPLC with nee Detection	30
Table 10.	Measured Concentrations of Pyrene Analyzed by HPLC with Fluorescence Detection	31
Table 11.	Measured Concentrations of Chrysene Analyzed by HPLC/UV	32
Table 12. Fluorescer	Measured Concentrations of Benzo(a)anthracene Analyzed by HPLC with nee Detection	33
Table 13. Fluorescer	Measured Concentrations of Benzo(b)fluoranthene Analyzed by HPLC with Detection	34
Table 14. Fluorescer	Measured Concentrations of Benzo(k)fluoranthene Analyzed by HPLC with Detection	35
Table 15. Fluorescer	Measured Concentrations of Benzo(a)pyrene Analyzed by HPLC with Detection	36
Table 16. Fluorescer	Measured Concentrations of Dibenz(a,h)anthracene Analyzed by HPLC with Detection	37
Table 17.	Measured Concentrations of Indeno(1,2,3-cd)pyrene Analyzed by HPLC/UV	38

- 7 -

TABLE OF CONTENTS (Continued)

Fluorescer	Measured Concentrations of Benzo(g,h,1)perylene Analyzed by HPLC with nee Detection	39
Table 19. Fluorescer	Measured Concentrations of Dibenzo(a,e)pyrene Analyzed by HPLC with nee Detection	40
Table 20.	Measured Concentrations of Arsenic Analyzed by ICP-AES	41
Table 21.	Measured Concentrations of Copper Analyzed by ICP-AES	42
Table 22.	Measured Concentrations of Iron Analyzed by ICP-AES	43
Table 23.	Measured Concentrations of Nickel Analyzed by ICP-AES	44
Table 24.	Measured Concentrations of Selenium Analyzed by ICP-AES	45
Table 25.	Measured Concentrations of Vanadium Analyzed by ICP-AES	46
Table 26.	Measured Concentrations of Sulfur Analyzed by ICP-AES	47
Table 27.	Temperature, Dissolved Oxygen and pH of Water in the Test Chambers	48
Table 28.	Specific Conductance, Hardness, Alkalinity and Total Organic Carbon Measured in the Dilution Water at Test Initiation	49
Table 29.	Cumulative Mortality/Immobility and Observations	50
Table 30.	Estimates of the EL50 Values	51

- 8 -

TABLE OF CONTENTS (Continued)

APPENDICES

Appendix 1.	Exploratory Non-GLP Rangefinding Toxicity Test with Petroleum Coke	52
Appendix 2.	Protocol, Amendments and Deviations	55
Appendix 3.	Test Article Selection	78
Appendix 4.	AVEKA, Inc. Particle Processing Report.	89
Appendix 5.	Laboratory Characterization of 2 mm Particle Size Petroleum Coke	97
Appendix 6.	Specific Conductance, Hardness, Alkalinity and pH of Well Water Measured During the 4-Week Period Immediately Preceding the Test	103
Appendix 7. Well	Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Water	104
Appendix 8.	Results of WAF Equilibration Trial	106
Appendix 9.	Analysis of Organic Constituents of Petroleum Coke in Freshwater	107
Appendix 10.	Analysis of Inorganic Constituents of Petroleum Coke in Freshwater	135
Appendix 11.	Personnel Involved in the Study	157
Appendix 12.	Report Amendment	158

- 9 -

SUMMARY

SPONSOR: American Petroleum Institute

TITLE: Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test with the Cladoceran

(Daphnia magna)

WILDLIFE INTERNATIONAL, LTD. PROJECT NUMBER: 472A-112

TEST SUBSTANCE: Petroleum Coke

GUIDELINES: OECD Guideline for Testing of Chemicals, 202: Part 1 – 24H EC50 Acute

Immobilization Test;

U.S. EPA Series 850 – Ecological Effects Test Guidelines OPPTS Number 850.1010: *Aquatic Invertebrate Acute Toxicity Test, Freshwater Daphnids*

TEST DATES: Study Initiation: April 22, 2004

Experimental Start (OECD): March 21, 2005
Experimental Start (EPA): March 22, 2005
Biological Termination: March 24, 2005
Experimental Termination: March 31, 2005

LENGTH OF EXPOSURE: 48 Hours

TEST ORGANISMS: Cladoceran (Daphnia magna)

SOURCE OF TEST ORGANISMS: Wildlife International, Ltd. Cultures

Easton, Maryland 21601

AGE OF TEST ORGANISMS: Neonates, <24 hours old

TEST CONCENTRATIONS: Nominal WAF Loading Rate
Negative Control
1000 mg/L

RESULTS: Based on nominal WAF loading rate:

EL50: >1000 mg/L NOELR: 1000 mg/L

INTRODUCTION

Wildlife International, Ltd. conducted a 48-hour static-renewal acute im mobilization test to determine the effects of a water accommodated fraction of petroleum coke on the cladoceran, *Daphnia magna*, for the American Petroleum Institute at the Wildlife International, Ltd. aquatic toxicologyfacility in Easton, Maryland. Petroleum coke is defined as the product formed by subjecting the heavytar-like residue remaining following oil refining to high tem peratures and pressures. It consists of prim arily elemental carbon with considerably smaller amounts of hydrocarbons, sulfur and trace amounts of heavy metals. The in-life phase of the definitive test was conducted from March 22 to 24, 2005. Raw data generated by Wildlife International, Ltd. and a copy of the final report are filed under Project Number 472A-112 in archives located on the Wildlife International, Ltd. site.

OBJECTIVE

The objective of this studywas to determine the acute effects of a water accommodated fraction of petroleum coke on the cladoceran, *Daphnia magna*, during a 48-hour exposure under static-renewal conditions in a sealed exposure system.

EXPERIMENTAL DESIGN

Daphnids were exposed to a single water accommodated fraction (WAF) of the test substance and a negative (dilution water) control for 48 hours. Thenominal WAF loading rate was 1000 ng/L. For this test, the term loading rate means the total amount of test substance added to the dilution water volume (mg/L) to achieve the respective WAF solution. Recause petroleum coke is a multi-component substance not fully soluble in water, WAFs are an acceptablemeans of creating exposure solutions for ecotoxicity tests (3). The WAF loading rate was selected inconsultation with the Sponsor, and was based upon the results of an exploratory range finding toxicity test (Appendix 1). Three replicate test chambers were maintained in each treatment and control group, with 10 daphnids in each test chamber, for a total of 30 daphnids per test concentration. Daphnids were transferred to newly prepared WAF solutions and control water at approximately 24 hours. Water samples were collected at test initiation, prior to renewal of solutions at 24 hours, and at test termination for analysis for selected constituents of petroleumcoke. Because petroleum coke is a complex mixture of elemental carbon and low levels of hydrocarbons and metals, several polyaromatic hydrocarbons and metals were selected tobe monitored in the test solutions during the test. The components selected for measurement were those that are either of ecological concern or were known to occur in petroleum coke in am ounts that m ight be m easured in a WAF solution. Those constituents of interest included the following:

PAH	Metals and Sulfur
Acenaphthene Nickel	
Acenaphthylene Vanadium	
Anthracene Iron	
Benzo(a)anthracene Copper	
Benzo(a)pyrene Selenium	
Benzo(b)fluoranthene Arsenic	
Benzo(g,h,i)perylene Sulfur	
Benzo(k)fluoranthene	
Chrysene	
Dibenzo(a,e)pyrene	
Dibenz(a,h)anthracene	
Fluoranthene	
Fluorene	
Indeno(1,2,3-cd)pyrene	
Naphthalene	
Phenanthrene	
Pyrene	
1-Methylnaphthalene	
2-Methylnaphthalene	

Daphnids were impartially assigned to exposure chambers at test initiation. Observations of mortality/immobility and other clinical signs were made approximately 2, 24 and 48 hours after test initiation. The cumulative percent mortality/immobility observed in the treatment group was used to determine whether the 24 and 48-hour EL50 values were greater or less than the 1000 ng/L WAF loading rate. The no-observed-effect-loading rate (NOELR) was determined by visually interpreting the mortality, immobility and observation data.

MATERIALS AND METHODS

The study was conducted according to the procedures outlined in the protocol, "Petroleum Coke: A 48-Hour Static-Renewal Acute Im mobilisation Test with the Cladoceran (*Daphnia magna*)" (Appendix 2). The protocol was based on procedures outlined in the OECD Guideline for Testing of Chemicals, 202: *Part 1 – 24H EC50 Acute Immobilization Test* (4); and U.S. EPA Series 850 – Ecological Effects Test Guidelines OPPTS Number 850.1010: *Aquatic Invertebrate Acute Toxicity Test, Freshwater Daphnids* (5).

Test Substance

The test substance was green petroleumcoke (CAS Number 64741-79-3). The test substance was received from Experimental Pathology Laboratories, Herndon, VA for API on October 7, 2003. It was assigned Wildlife International, Ltd. identification number 6485 upon receipt and was stored under ambient conditions. The test substance, black pellets, was identified as 2 mm particle size Petroleum Coke (aka Milled Pellets).

The identity, strength, purity, composition (Appendix 4), storage stability, and method of synthesis, fabrication and/or derivation (Appendix 3) of each batch of the test substance and the maintenance of these records were the responsibility of the Sponsor.

Reference Substances

Purified polyaromatic hydrocarbons (PAH) were made up of components received from three manufacturers. The following reference standards were received from AccuStandard Inc. and were stored under ambient conditions:

	Test					
	Substance		CAS	Date	Expiration	
Component	<u>Number</u>	Lot/Batch	<u>Number</u>	Received	<u>Date</u>	<u>Description</u>
Benzo(a)pyrene	6705	052803MT-AC	50-32-8	6/07/04	6/03/07	green powder
Anthracene	6706	A33783	120-12-7	6/07/04	6/03/07	white powder
Benz(a)anthracene	6707	19587	56-55-3	6/07/04	6/03/07	colorless plates
Acenaphthylene	6708	011504MS-AC	208-96-8	6/07/04	6/03/07	yellow powder
Acenaphthene	6709	01915EQ	83-32-9	6/07/04	6/03/07	white crystal
Benzo(b)fluoranthene	6710	020402AG-AC	205-99-2	6/07/04	6/03/07	white flakes
Benzo(g,h,i)perylene	6711	122 500MT-AC	191-24-2	6/07/04	6/03/07	green powder
Benzo(k)fluoranthene	6712	112603AG-AC	207-08-9	6/08/04	6/03/07	yellow powder
Chrysene	6713	13103	218-01-9	6/08/04	6/03/07	white powder
Dibenz(a,h)anthracene	6714	13246	53-70-3	6/08/04	6/03/07	green powder
Fluoranthene	6715	19762	206-44-0	6/08/04	6/03/07	white powder
Fluorene	6716	19675	86-73-7	6/08/04	6/03/07	white powder
Indeno(1,2,3-cd)pyrene	6717	19641	193-39-5	6/08/04	6/03/07	yellow powder
Naphthalene	6718	167A-A	91-20-3	6/08/04	6/03/07	white flakes
Phenanthrene	6719	090903AG-AC-1	85-01-8	6/08/04	6/03/07	white powder
Pyrene	6720	09617LR	129-00-0	6/08/04	6/03/07	green crystal

The following reference standard was received from Cambridge-Isotope Labs and was stored under ambient conditions:

	Test					
	Substance		CAS	Date	Expiration	
Component	Number	Lot/Batch	<u>Number</u>	Received	<u>Date</u>	<u>Description</u>
Dibenzo(a,e)pyrene 6518		I1-7628	192-65-4	10/22/03	Not given	Solids

The following standards were received from ChemService and were stored under am bient conditions:

	Test					
	Substance		CAS	Date	Expiration	
Component	<u>Number</u>	Lot/Batch	<u>Number</u>	Received	Date	Description
2-Methylnaphthalene	6765	310-43C	91-57-6	8/03/04	9/01/08	Solid
1-Methylnaphthalene	6766	325-31A	90-12-0	8/03/04	5/01/09	Liquid

Analytical standards for each of the seven metal and sulfur elements of interest were received from Spex Industries (Metuchen, N.J. 08840) and we re stored under am bient conditions. All of the materials were 1,000 mg/L Spex CertiPrep[®] plasma standards in 2% HNO₃, with the exception of the sulfur standard which was a 10,000 mg/L preparation in water. The following tabulation sum marizes pertinent data for each analytical standard:

Component	Test Substance <u>Number</u>	Lot/Batch	CAS <u>Number</u>	Date <u>Received</u>	Expiration <u>Date</u>	<u>Description</u>
Arsenic (As)	6543	10-06AS	7440-38-2	11/06/03	11/15/05	Clear liquid
Copper (Cu)	6544	9-183CU	7440-50-8	11/06/03	11/15/05	Blue liquid
Iron (Fe)	6545	9-184FE	7439-89-6	11/06/03	11/15/05	Clear Liquid
Nickel (Ni)	6546	10-29NI	7440-02-0	11/06/03	11/15/05	Blue liquid
Selenium (Se)	6547	10-31SE	7782-49-2	11/06/03	11/15/05	Clear Liquid
Sulfur (S)	6890	S9-51S	7704-34-9	10/18/04	10/15/05	Liquid
Vanadium (V)	6549	10-88V	7440-62-2	11/06/03	11/15/05	Yellow Liquid

Test Organism

The cladoceran, *Daphnia magna*, was selected as the test species for this study. Daphnids are representative of an important group of aquatic invertebrates and were selected for use in the test based upon past history of use and ease of culturing in the laboratory. Daphnid neonates used in the test were

less than 24-hours old and were obtained fromultures maintained by Wildlife International, Ltd., Easton, Maryland.

Adult daphnids were cultured in individual beakers containing approximately 80 mL of water from the same source and at approximately the same temperature as used during the test. During the 14-day period preceding the test, water temperatures in the cultures ranged from 20.3 to 21.0°C, measured with a hand-held liquid-in-glass thermometer. The pHof the water ranged from 8.2 to 8.7, measured with a Fisher Scientific Accumet Model 915 pH meter. Dissolved oxygen concentrations ranged from 7.4 to 8.8 mg/L (≥82% of saturation), m easured with a Yellow Springs Instrum ents Model 51B dissolved oxygen meter.

Once daily during culturing, daphnids were fed a mixture of yeast, Cerophyll[®], and trout chow (YCT), as well as a suspension of the freshwater green alga, *Selenastrum capricornutum*. The adults were fed prior to test initiation, but neonates were not fed during the test.

The adult daphnia in the cultures producing neonates for the test were 18 day s old prior to collection of the juveniles for testing. Adult daphnia the cultures produced anaverage of at least three young per adult per day over the 7-day period prior to the test. The adults showed no signs of disease or stress during the culture period, and no ephippia were produced in the cultures. Neonate daphnids were obtained for testing from three individual adult daphnids that had produced at least one prior brood. At test initiation, the juvenile daphnids were collected from the cultures and indiscriminately transferred one and two at a time to transfer chambers (e.g., 10 mL glass beakers) until each cham ber contained 10 neonates. Each transfer chamber was indiscriminately assigned to a test chamber, and the neonates were transferred to the test chambers to initiate the test. All transfers were made below the water surface using wide-bore pipettes.

Dilution Water

The water used for culturing and testing was freshwater obtained from a well approximately 40 meters deep located on the Wildlife International, Ltd. site. The well water is characterized as moderately-hard water. The specific conductance, hardness, alkalinity and pH of the well waterduring the four-week period immediately preceding the test are presented in Appendix 6.

The well water was passed through a sand filter toremove particles greater than approximately 25 µm, and pumped into a 37,800-L storage tank where the water was aerated with spray nozzles. Prior to use, the water again was filtered (0.45 µm) and passed through an ultraviolet(UV) sterilizer to remove fine particles and m icroorganisms. The results of periodic analyses perform ed to m easure the concentrations of selected organic and inorgani c constituents in the well water are presented in Appendix 7.

Test Apparatus

Test chambers consisted of 500-mL glass French square bottles with Teflon[®]-lined lids. Each test chamber was completely filled with test solution on minimize headspace. The depth of test solution in a representative test chamber was 16.7 cm. Each test chamber was labeled with the project number, WAF loading rate and replicate. Test chambers were impartially positioned in a tem perature-controlled environmental chamber set to maintain the desired test temperature throughout the test period.

Preparation of Test Concentrations

The test and control solutions were prepared prior to test initiation on Day0. New solutions were prepared in separate test chambers on Day 1, and all daphnids were transferred fromold to new solutions. The test solution was prepared in the formof awater accommodated fraction (WAF) at a nominal loading rate of 1000 mg/L. The WAF was prepared bymixing the test substance into 12 L of dilution water (UV sterilized well water) in a 13.2 L Pyrex® aspirator bottle. The solution was stirred with a Teflon-coated stir bar on a magnetic stir plate for approximately 24 hours. Care was taken to maintain a vortex depth of approximately 30% of the test solution height. The duration of the mixing period was established during an exploratory WAF equilibration test (Appendix 8). Following the mixing period, the WAF solution was allowed to settle for approximately one hour be fore the solutions were decanted into the test chambers through a spigot and tubing placed approximately 2-3 cm from the bottom of the aspirator bottle.

Analytical Sampling

Samples were collected from each control and treatment group at the beginning of the test, prior to renewal of solutions at approximately 24 hours, and at test termination to measure concentrations of soluble components of the test substance. Samples were decanted from each WAF preparation vessel at the beginning of the test, and were pooled from solution collected at mid-depth from each replicate test

chamber prior to the 24-hour renewal and at test term ination. At each sampling interval, one set of samples was collected for analysis of selected organic compounds, and a second set of samples was collected for analysis of selected inorganic elements. All samples were stored until analyzed at the end of the test. Sam ples collected for organic analyses were preserved by refrigerated storage with zero headspace. Samples collected for inorganic analyses were preserved by the addition of sufficient nitric acid (HNO₃) to achieve a final acid concentration of 2%.

Analytical Method by HPLC

The method used for the analysis of the test samples for organic compounds was based upon methodology developed by Wildlife International, Ltd.(6). The analytical method consisted of diluting the samples in freshwater, as necessary, and analyzing by direct injection h igh performance liquid chromatography (HPLC) with either UV detection at 220 nm or fluorescence detection at 340 nm to 425 nm.

Concentrations of each PAH compound in the fortified samples were determined using an Agilent Model 1100 High Perform ance Liquid Chromatograph, equipped with either an Agilent Series 1100 Variable Wavelength Detector or a Jasco Model FP-1520 Fluorescence Detector. Chromatographic separations were achieved using a YMC Pack ODS-AM colum (150 mm x 4.6 mm, 3 µm particle size). A method flow chart is provided in Appendix 9.1 and instrumental parameters for the analysis of PAH components are summarized in Appendix 9.2.

Five calibration standards of PAH, ranging in concentration from 5.00 to 50.0µg/L, were prepared prior to the test using a stock solution of PAH analytical standards in methanol (Appendix 9.3). The calibration standards were analyzed with each sample set. Linear regression equations were generated using the peak area responses versus the respective concentrations of the calibration standards. The concentration of PAH in the sam ples was determined by substituting the peak area responses of the samples into the applicable linear regression equation.

The method limit of quantitation (LOQ) was defined as $5.00\mu g/L$, calculated as the product of the concentration of the lowest calibration standard ($5.00 \mu g/L$) and the dilution factor of the matrix blank samples (1.00). One matrix blank sample was analyzed with each sample set to determine possible interferences. No interferences were observed at or above the LOQ during the sample analyses.

Samples of freshwater were fo rtified at 10.0, 40.0 and $100 \mu g/L$ using a stock solution of PAH analytical standard in methanol (Appendix 9.3), and were analyzed concurrently with the test samples. The measured concentrations for the matrix fortification samples ranged from 90.0 to 117% of fortified concentrations (Tables 1 through 19).

Representative calibration curves are presented in Appendices 9.4 through 9.22. Representative chromatograms of low and high-level calibration standards are presented in Appendices 9.23 and 9.24, respectively. Representative chromatograms of a freshwater matrix blank sample and a matrix fortification sample are presented in Appendices 9.25 and 9.26, respectively. A representative chromatogram of a test sample is presented in Appendix 9.27.

Analytical Method by ICP-AES

The analytical method used for the analysis of the inorganic elements, As, Se, Fe, Ni, Se, V and S, in the test samples was based upon methodology developed by Wildlife International, Ltd. (7). The analytical method consisted of acidifying the samples 2% by volume with concentrated nitric acid and direct injection into the ICP-AES system. Concentrations of As, Cu, Fe, Ni, Se, S and V in the samples were determined using a Perkin-Elmer Optima 3000 DV ICP-AES configured in axial view mode and equipped with a Cetac U-5000AT ⁺ Ultrasonic Nebulizer (sam ple introduction). Simultaneous measurements were made for six of the seven elements (As, Cu, Fe, Ni, Se and V). For sulfur, a single element method was employed due to the need for higher concentration-level calibration standards. A method flowchart is provided in Appendix 10.1 and instrmental parameters for the analysis of the seven elements are summarized in Appendix 10.2.

Multi-element calibration standards were analyzed with the test samples. Preparations of stock and calibration standard solutions are detailed in Appendix 10.3. The calibration standard series was injected at the beginning and end of each analyical run. In addition, a standard wasinjected following a maximum of five sample analyses. For a given injection of a sample (including standards), the ICP-AES instrument integrated the steady-state emission signal at designated emission wavelengths for a method-specified period (read time). The net integrated intensity was then automatically corrected by subtraction of the m ean corrected intensity of the calibration blank (determined at sequence initiation). The measurement cycle was automatically repeated two additional times during the sample injection (read replicates). The mean of the three measurements produced a mean corrected intensity for each monitored

element in the sample. Linear regression equations for each monitored element were generated using mean corrected intensities versus therespective concentrations of the element in the calibrationstandards. Representative calibration curves for As, Cu, Fe, Ni, Se, S and V are presented in Appendices 10.4 – 10.10. The concentrations of each—of the seven elements in the test sam—ples were calculated by substituting their mean corrected intensities into the applicable linear regression equation, and applying the appropriate dilution and unit conversion factors. Representative emission spectra of low- and high-level calibration standards are presented in Appendices 10.11 – 10.13. An exam ple calculation for a study sample is provided in Appendix 10.14.

A matrix blank was analyzed for each component concurrent with the test samples to determine possible interferences. No interferences were observed at or above the limit of quantitation (LOQ) during the sample analyses (Appendices 10.15 – 10.17). A sample of freshwater was fortified at 2X (S) or 2.5X (As, Cu, Fe, Ni, Se and V) the method LOQ for each element and analyzed for each component concurrent with the study samples using the combined stock and the sulfur reference standard. Results are presented in Tables 20 through 26. Emission spectra of freshwater metrix blank and metrix fortification samples are presented in Appendices 10.15 – 10.17. The measured concentrations for the matrix fortification samples ranged from 96.9 to 112% of fortified concentrations (Tables 20 through 26). Representative emission spectra of a WAF test sample are presented in Appendices 10.18 – 10.20.

Environmental Conditions

Ambient room light was used to illuminate the test systems. Fluorescent light bulbs that emit wavelengths similar to na tural sunlight (Colortone [®] 50) were controlled with an automatic timer to provide a photoperiod of 16hours of light and 8 hours ofdarkness. A 30-minute transition period of low light intensity was provided at the beginning and end of the 16-hour light period to avoid sudden changes in light intensity. Light intensity at test initia tion was 413 lux over the water surface of one control replicate.

The target test temperature during the study was $20 \pm 2^{\circ}$ C. Tem perature was monitored continuously during the entire test in a container of water placed adjacent to the test chambers using a Fulscope ER/C Recorder. The recorder neasurements were verified prior to testinitiation with a liquid-in-glass thermometer. Temperature, dissolved oxygen and pH were measured in the newly prepared WAF solutions at the beginning of the test and at the 24-hour renewal, and in each test chamber prior to

renewal at 24 hours and at test termination. Hardness, alkalinity, specific conductance and total organic carbon (TOC) were measured in a sample of dilution water collected at test initiation.

Light intensity was measured using a SPER Scientific Ltd.Model 840006C light meter. Manual temperature measurements were made using a liquid-in-glass thermometer. Measurements of pH were made using a Thermo Orion Model 525Aplus pH meter, and dissolved oxygen was measured using a Thermo Orion Model 850Aplus dissolved oxygen meter. Specific conductance was measured using a Yellow Springs Instrument Model 33 Salinity-Conductivity-Temperature meter. Hardness and alkalinity measurements were made by titration based on procedures in *Standard Methods for the Examination of Water and Wastewater* (8). TOC was measured using a SHIMADZU Model TOC-5000 total organic carbon analyzer.

Observations

All organisms were observed periodically to determine the numbers of mortalities and immobile organisms in each control and treatment group. The number of individuals exhibiting clinical signs of toxicity also was evaluated. Immobilisation was defined as the inability to swim within 15 seconds after gentle agitation of the test container. Observationswere made approximately 2, 24 and 48hours after test initiation.

Conditions for the Validity of the Test

The following criteria used to judge the validity of the test were met:

- 1. immobility of the daphnids in the negative control group did not exceed 10% by the end of the test, and
- 2. the dissolved oxygen concentration was at least 60% of the air-saturation value throughout the test.

Data Analyses

The cumulative percent m ortality/immobility observed in the treatment group was used to determine whether the 24 and 48-hour EL50 values were greater or less than the 1000 ng/L WAF loading rate. The no-observed-effect-loading rate (NOELR) was determined by visually interpreting the mortality, immobility and observation data.

- 20 -

RESULTS AND DISCUSSION

Measurement of Test Concentrations

Results of analyses to measure polyaromatic hydrocarbon and metals in the WAF and control solutions are presented in Tables1-26 and in the analytical chemistry reports (Appendices 9 and 10). All measurements of PAHs and metals in control and WAF solutions were below detection limits for the methods. Therefore, estimates of the EL50 and NOELR valueswere based on the nominal WAF loading rate of 1000 mg/L used in the test.

Observations and Measurements

In the test chambers, the negative control solutions appeared clear and colorless. The 1000 rg/L solutions appeared clear and colorless with fine black powder suspended throughout at test initiation, and clear and colorless with small amounts of fine black powder on the bottom of the test chambers at test termination.

Measurements of temperature, dissolved oxygen and pH of the test solutions are presented in Table 27. Water temperatures were within the $20\pm2^{\circ}$ C range established for the test. Measurements of water pH ranged from 8.3 to 8.5. Dissolved oxygen concentrations remained \geq 8.7 mg/L (\geq 97% of saturation) throughout the test. Measurements of hardness, alkalinity, specific conductance and TOCin the dilution water at test initiation were typical of Wildlife International, Ltd. well water (Table 28).

Daily observations of mortality/immobility and other clinical signs of toxicity observed during the test are presented in Table 29. No immobile or dead daphnids occurred during the test. All daphnids in the negative control group and in the 1000 m g/L treatment group appeared normal throughout the exposure period. The 24 and 48-hour EL50 values were estimated to be greater than the single WAF loading rate of 1000 mg/L (Table 30). The NOELR was 1000 mg/L.

CONCLUSIONS

The cladoceran, *Daphnia magna*, was exposed under static-renewal conditionsfor 48 hours to a single water accom modated fraction (WAF) of petroleum coke at a nom inal WAF loading rate of 1000 mg/L in a sealed exposure system. The 48-hour EL50 value was determined to be >1000 mg/L, the single WAF loading rate tested. The NOELR was 1000 mg/L.

- 21 -

REFERENCES

- 1 **OECD.** 1998. OECD Principles of Good Laboratory Practice ENV/MC/CHEM (98) 17.
- 2 **Title 40 of the Code of Federal Regulations, Part 792** . 1989. *Toxic Substances Control Act (TSCA) Good Laboratory Practice Standards*.
- 3 Organization for Econom ic Cooperation and Developm ent. 2000. Guidance Document on Aquatic Toxicity Testing of Difficult Substances and Mixtures. ENV/JM/MONO (2000) 6. OECD Environmental Health and Safety Publication Series on Testing and Assessment No. 23. OECD, Paris, September 2000.
- 4 **Organization for Econom ic Cooperation and Developm ent.** 1984. OECD Guideline 202: *Daphnia sp. Acute Immobilization Test and Reproduction Test.* Adopted 4 April 1984. Addendum3 to C(81)30(Final).
- 5 **U.S. Environmental Protection Agency**. 1996. Series 850 Ecological Effects Test Guidelines (*draft*), OPPTS Number 850.1010: *Aquatic Invertebrate Acute Toxicity Test, Freshwater Daphnids*.
- 6 **Timothy Z. Kendall and Willard B. Nixon.** 2005. Analy tical Method Verification for the Determination of Water Soluble Components of Petroleum Coke in Freshwater Using Gas Chromatography (GC) or High Performance Liquid Chromatography (HPLC). Wildlife International, Ltd. Project Number 472C-104. Unpublished.
- 7 Raymond L. Van Hoven and Willard B. Nixon. 2005. Analytical Method Verification for the Determination of Water Soluble Components of Petroleum Coke in Freshwater Using Inductively Coupled Plasma Atomic Emission Spectrometry (ICP-AES). Wildlife International, Ltd. Project Number 472C-105. Unpublished.
- 8 **APHA, AWWA, WPCF.** 1998. *Standard Methods for the Examination of Water and Wastewater*. 20th Edition.

Table 1

Measured Concentrations of Naphthalene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.2	102
40.0	MAS-2		40.5	101
100	MAS-3		91.6	91.6
Mean			=	98.2
			Standard Deviation =	5.74
			CV =	5.84%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 2

Measured Concentrations of Acenaphthylene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.93	99.3
40.0	MAS-2		40.3	101
100	MAS-3		97.6	97.6
Mean			=	99.3
			Standard Deviation =	1.70
			CV =	1.71%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 24 -

Table 3

Measured Concentrations of 1-Methylnaphthalene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample Identification	Sampling Interval	Measured	Percent
Concentration			Concentration	of
$(\mu g/L)$	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.1	101
40.0	MAS-2		40.6	101
100	MAS-3		92.3	92.3
Mean			=	98.1
			Standard Deviation =	5.02
			CV =	5.12%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 4

Measured Concentrations of 2-Methylnaphthalene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.0	100
40.0	MAS-2		40.7	102
100	MAS-3		90.0	90.0
Mean			=	97.3
			Standard Deviation =	6.43
			CV =	6.61%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 26 -

Table 5

Measured Concentrations of Fluorene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal Concentration	Sample Identification	Sampling Interval	Measured Concentration	Percent of
				Nominal ²
$(\mu g/L)$	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominai
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.63	96.3
40.0	MAS-2		39.9	99.8
100	MAS-3		96.7	96.7
Mean			=	97.6
			Standard Deviation =	1.92
			CV =	1.96%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 27 -

Table 6

Measured Concentrations of Acenaphthene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		10.0	100
40.0	MAS-2		40.5	101
100	MAS-3		96.8	96.8
Mean			=	99.3
			Standard Deviation =	2.19
			CV =	2.21%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 7

Measured Concentrations of Phenanthrene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.82	98.2
40.0	MAS-2		40.4	101
100	MAS-3		97.1	97.1
Mean			=	98.8
			Standard Deviation =	2.01
			CV =	2.04%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 29 -

Table 8

Measured Concentrations of Anthracene Analyzed by HPLC with Fluorescence Detection

Nominal Concentration	Sample Identification	Sampling Interval	Measured Concentration	Percent of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.29	92.9
40.0	MAS-2		42.7	107
100	MAS-3		101	101
Mean			=	100
			Standard Deviation =	7.08
			CV =	7.08%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 9

Measured Concentrations of Fluoranthene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.72	97.2
40.0	MAS-2		40.5	101
100	MAS-3		117	117
Mean			=	105
			Standard Deviation =	10.5
			CV =	10.0%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 31 -

Table 10

Measured Concentrations of Pyrene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.47	94.7
40.0	MAS-2		39.7	99.3
100	MAS-3		93.8	93.8
Mean			=	95.9
			Standard Deviation =	2.95
			CV =	3.08%

The limit of quantitation (LOQ) was $5.00\mu g/L$, calculated as the product of the lowest standard concentration ($5.00 \mu g/L$) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 32 -

Table 11

Measured Concentrations of Chrysene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	(mg/L) ¹	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control 1000	9	48	< LOQ	
	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.61	96.1
40.0	MAS-2		40.6	101
100	MAS-3		101	101
Mean			=	99.4
			Standard Deviation =	2.83
			CV =	2.85%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 12

Measured Concentrations of Benzo(a)anthracene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.51	95.1
40.0	MAS-2		41.4	103
100	MAS-3		101	101
Mean			=	99.7
			Standard Deviation =	4.11
			CV =	4.12%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 34 -

Table 13

Measured Concentrations of Benzo(b)fluoranthene Analyzed by HPLC with Fluorescence Detection

Nominal Concentration	Sample Identification	Sampling Interval	Measured Concentration	Percent of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control 1000	5 6	24 24	< LOQ < LOQ	
Negative Control	9 10	48 48	<loq <loo< td=""><td><u></u></td></loo<></loq 	<u></u>

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.12	91.2
40.0	MAS-2		40.5	101
100	MAS-3		99.6	99.6
Mean			=	97.3
			Standard Deviation =	5.30
			CV =	5.45%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 14

Measured Concentrations of Benzo(k)fluoranthene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.43	94.3
40.0	MAS-2		40.6	102
100	MAS-3		101	101
Mean			=	99.1
			Standard Deviation =	4.19
			CV =	4.22%

The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 15

Measured Concentrations of Benzo(a)pyrene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Nacativa Cantral	0	40	<1.00	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
$\mu g/L$	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.33	93.3
40.0	MAS-2		40.6	101
100	MAS-3		101	101
Mean			=	98.4
			Standard Deviation =	4.45
			CV =	4.52%

The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 37 -

Table 16

Measured Concentrations of Dibenz(a,h)anthracene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.51	95.1
40.0	MAS-2		40.8	102
100	MAS-3		101	101
Mean			=	99.4
			Standard Deviation =	3.73
			CV =	3.75%

The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 38 -

Table 17

Measured Concentrations of Indeno(1,2,3-cd)pyrene Analyzed by HPLC/UV

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal Concentration	Sample Identification	Sampling Interval	Measured Concentration	Percent of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.19	91.9
40.0	MAS-2		40.7	102
100	MAS-3		101	101
Mean			=	98.3
			Standard Deviation =	5.57
			CV =	5.66%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

Table 18

Measured Concentrations of Benzo(g,h,i)perylene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
μ g/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominal ²
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.76	97.6
40.0	MAS-2		41.0	103
100	MAS-3		98.9	98.9
Mean			=	99.8
			Standard Deviation =	2.82
			CV =	2.82%

The limit of quantitation (LOQ) was 5.00µg/L, calculated as the product of the lowest standard concentration (5.00 µg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 40 -

Table 19

Measured Concentrations of Dibenzo(a,e)pyrene Analyzed by HPLC with Fluorescence Detection

Nominal	Sample	Sampling	Measured	Percent
Concentration	Identification	Interval	Concentration	of
(mg/L)	(472A-112-)	(Hour)	$(mg/L)^1$	Nominal ²
Negative Control	1	0	< LOQ	
1000	2	0	< LOQ	
Negative Control	5	24	< LOQ	
1000	6	24	< LOQ	
Negative Control	9	48	< LOQ	
1000	10	48	< LOQ	

Nominal Concentration	Sample Identification	Sampling Interval	Measured Concentration	Percent of
				Nominal ²
(µg/L)	(472A-112-)	(Hour)	$(\mu g/L)^1$	Nominai
0.0	MAB-1		< LOQ	
10.0	MAS-1		9.61	96.1
40.0	MAS-2		40.5	101
100	MAS-3		103	103
Mean			=	100
			Standard Deviation =	3.55
			CV =	3.55%

The limit of quantitation (LOQ) was 5.00μg/L, calculated as the product of the lowest standard concentration (5.00 μg/L) and the dilution factor of the matrix blank samples (1.00).

² Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

- 41 -

Table 20

Measured Concentrations of Arsenic Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-112-)	Sampling Interval (Hours)	Measured Arsenic Concentration (μg/L) 1,2
Negative Control	3	0	< LOQ
1000	4		< LOQ
Negative Control	7	24	< LOQ
1000	8	24	< LOQ
Negative Control 1000	11	48	< LOQ
	12	48	< LOQ

Nominal		Measured	
Arsenic	Sample	Arsenic	Percent
Concentration	Identification	Concentration	of
μ g/L)	(472A-112-)	$(\mu g/L)^{-1}$	Nominal 1
0.0	MAB-1	< LOQ	
50.0	MAS-1	54.0	108

¹ Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 20 $\mu g/L$

- 42 -

Table 21

Measured Concentrations of Copper Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-112-)	Sampling Interval (Hours)	Measured Copper Concentration (μg/L) 1,2
Negative Control 1000	3 4	0	<loq <loq< td=""></loq<></loq
Negative Control 1000	7	24	< LOQ
	8	24	< LOQ
Negative Control 1000	11	48	<loq< td=""></loq<>
	12	48	<loq< td=""></loq<>

Nominal		Measured	
Copper	Sample	Copper	Percent
Concentration	Identification	Concentration	of
μ g/L)	(472A-112-)	$(\mu g/L)^{1}$	Nominal 1
0.0	MAB-1	< LOQ	
50.0	MAS-1	53.4	107

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 20 $\mu g/L$

- 43 -

Table 22

Measured Concentrations of Iron Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-112-)	Sampling Interval (Hours)	Measured Iron Concentration $(\mu g/L)^{1,2}$		
Negative Control 1000	3 4	0	<loq <loq< td=""></loq<></loq 		
Negative Control	7	24	< LOQ		
1000	8	24	< LOQ		
Negative Control 1000	11	48	<loq< td=""></loq<>		
	12	48	<loq< td=""></loq<>		

Nominal		Measured	
Iron	Comple	Iron	Percent
	Sample Identification		
Concentration		Concentration	of
(µg/L)	(472A-112-)	$(\mu g/L)^{-1}$	Nominal 1
0.0	MAB-1	< LOQ	
25.0	MAS-1	24.2	96.9

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 10 $\mu g/L$

- 44 -

Table 23

Measured Concentrations of Nickel Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-112-)	Sampling Interval (Hours)	Measured Nickel Concentration (μg/L) ^{1,2}		
Negative Control	3	0	<loq< td=""></loq<>		
1000	4		<loq< td=""></loq<>		
Negative Control 1000	7	24	< LOQ		
	8	24	< LOQ		
Negative Control	11	48	< LOQ		
	12	48	< LOQ		

Nominal		Measured	
Nickel	Sample	Nickel	Percent
Concentration	Identification	Concentration	of
$(\mu g/L)$	(472A-112-)	$(\mu g/L)^{1}$	Nominal ¹
0.0	MAB-1	< LOQ	
25.0	MAS-1	26.1	104

¹ Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 10 $\mu g/L$

- 45 -

Table 24

Measured Concentrations of Selenium Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-112-)	Sampling Interval (Hours)	Measured Selenium Concentration (μg/L) ^{1,2}		
Negative Control	3	0	< LOQ		
1000	4		< LOQ		
Negative Control 1000	7	24	< LOQ		
	8	24	< LOQ		
Negative Control	11	48	< LOQ		
	12	48	< LOQ		

Nominal		Measured	
Selenium	Sample	Selenium	Percent
Concentration	Identification	Concentration	of
μ g/L)	(472A-112-)	$(\mu g/L)^{-1}$	Nominal 1
0.0	MAB-1	< LOQ	
500	MAS-1	561	112

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 200 $\mu g/L$

- 46 -

Table 25

Measured Concentrations of Vanadium Analyzed by ICP-AES

Nominal Petroleum Coke Concentration (mg/L)	Sample Identification (472A-112-)	Sampling Interval (Hours)	Measured Vanadium Concentration (μg/L) ^{1,2}		
Negative Control	3	0	< LOQ		
1000	4	0	< LOQ		
Negative Control 1000	7	24	< LOQ		
	8	24	< LOQ		
Negative Control	11	48	< LOQ		
	12	48	< LOQ		

Nominal		Measured	
Vanadium	Sample	Vanadium	Percent
Concentration	Identification	Concentration	of
μ g/L)	(472A-112-)	$(\mu g/L)^{-1}$	Nominal ¹
0.0	MAB-1	< LOQ	
1.00	MAS-1	1.10	110

Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

 $^{^2}$ The limit of quantitation (LOQ) for these analyses was set at 0.40 $\mu g/L$

- 47 -

Table 26 Measured Concentrations of Sulfur Analyzed by ICP-AES

Nominal			Measured
Petroleum Coke	Sample	Sampling	Sulfur
Concentration	Identification	Interval	Concentration
(mg/L)	(472A-112-)	(Hours)	$(mg/L)^{1,2}$
Negative Control	3	0	< LOQ
1000	4	0	< LOQ
Negative Control	7	24	< LOQ
1000	8	24	< LOQ
Negative Control	11	48	< LOQ
1000	12	48	< LOQ

Nominal		Measured	
Sulfur	Sample	Sulfur	Percent
Concentration	Identification	Concentration	of
$\underline{\hspace{1cm}}$ (mg/L)	(472A-112-)	$(mg/L)^{1}$	Nominal 1
0.0	MAB-1	< LOQ	
20.0	MAS-1	20.1	101

¹Results were generated using Excel 2000 in full precision mode. Manual calculations may differ slightly.

The limit of quantitation (LOQ) for these analyses was set at 10 mg/L.

Table 27 Temperature, Dissolved Oxygen and pH of Water in the Test Chambers

Nominal WAF			0 Hour ¹			24 Hours to Renewa	al)		24 Hours ter Renewal)	1	48	Hours	
Loading Rate (mg/L)	Replicate	Temp. ² (°C)	DO^3 (mg/L)	рН	Temp. ² (°C)	DO^3 (mg/L)	рН	Temp. ² (°C)	DO^3 (mg/L)	рН	Temp. ² (°C)	DO^3 (mg/L)	рН
Negative Control	A	20.4	8.8	8.3	21.4	8.8	8.3	20.7	8.9	8.3	20.7	8.7	8.4
В					21.2	8.8	8.3				20.7	8.7	8.3
C					21.2	8.8	8.3				20.7	8.7	8.3
1000 A		20.3	8.8	8.3	21.3	8.8	8.3	20.7	8.9	8.3	20.4	8.7	8.3
В					21.2	8.9	8.3				20.5	8.7	8.4
C					21.2	8.8	8.3				20.4	8.7	8.5

Measurements at 0 hours and after renewal at 24 hours were taken from the WAF solutions, rather from individual replicates, in order to begin each renewal period with test chambers completely filled with no headspace.

Manual temperature measurements. Temperature measured continuously during the test ranged from 19.5 to 20.5°C, measured to the nearest 0.5°C.

A dissolved oxygen concentration of 5.4 mg/L represents 60% saturation at 20.0°C in freshwater.

- 49 -

Table 28

Specific Conductance, Hardness, Alkalinity and Total Organic Carbon Measured in the Dilution Water at Test Initiation

Parameter Day	0
Specific Conductance (μ mhos/cm)	310
Hardness 130 (mg/L as CaCO ₃)	
Alkalinity 180 (mg/L as CaCO ₃)	
Total Organic Carbon (m g C/L)	<1

Table 29 Cumulative Mortality/Immobility and Observations

			2 Ho	ours	24 Ho	ours ² 48	Н	lours	
Nominal WAF Loading Rate (mg/L)	Rep.	Daphnia/ Replicate	Cumulative No. Dead/No. Immobile	Observations ¹	Cumulative No. Dead/No. Immobile	Observations ¹	Cumulative No. Dead/No. Immobile	Observations ¹	Percent Dead and Immobile
Negative Control	A	10	0 / 0	10 AN	0 / 0	10 AN	0 / 0	10 AN	0
	В	10	0 / 0	10 AN	0 / 0	10 AN	0 / 0	10 AN	
	C	10	0 / 0	10 AN	0 / 0	10 AN	0 / 0	10 AN	
1000	A	10	0 / 0	10 AN	0 / 0	10 AN	0 / 0	10 AN	0
	В	10	0 / 0	10 AN	0 / 0	10 AN	0 / 0	10 AN	
	C	10	0 / 0	10 AN	0 / 0	10 AN	0 / 0	10 AN	

Observations: AN = appear normal.
All daphnia were transferred to newly prepared test solutions at approximately 24 hours.

- 51 -

Table 30
Estimates of the EL50 Values

Time	EL50 ¹ (mg/L)	95% Confidence Interval (mg/L)	Statistical Method
24 Hours	>1000	² NA	2
48 Hours	>1000	² NA	2

¹ Based on the single WAF loading rate tested.

There were no immobile daphnia in the treatment group. Therefore, EL50 values and 95% confidence limits could not be statistically calculated and were determined by visual interpretation of the data.

- 52 -

Appendix 1

Exploratory Non-GLP Rangefinding Toxicity Test with Petroleum Coke

EXPLORATORY NON-GLP RANGEFINDING TOXICITY TEST WITH PETROLEUM COKE

48-Hour Static-Renewal Acute Immobilisation Rangefinding Test with Daphnia magna

Project Number 472A-112

Introduction

An exploratory non-GLP rangefinding test was conducted from December 7 to 9, 2004 in the Wildlife International, Ltd. aquatic toxicology laboratory. The test was conducted under static-renewal conditions for 48 hours, with organisms transferred to newly prepared test solutions at 24 hours.

Methods and Materials

Test solutions were prepared as water accomodated fractions (WAF) at nominal loading rates of 10, 100 and 1000 mg test substance/L. An untreated control group was maintained concurrently. For each WAF, a calculated amount of test substance was mixed with 12 L of Wildlife International, Ltd. well water in a 13.2 L Pyrex aspirator bottle with tubulation. The solution was stirred for approximately 24 hours on a magnetic stir plate, with a vortex maintained at approximately 30% of the solution height. After mixing, each solution was allowed to settle for approximately one hour, and the solution was decanted into one test chamber per concentration. Test chambers were 500 mL glass French square bottles with Teflon-lined caps, filled completely with test solution to minimize headspace. New test solutions were prepared at approximately 24 hours using the same procedures.

Five Daphnia magna <24 hours old were placed in one test chamber per treatment and control group at initiation of the test. The test chambers were placed in a temperature-controlled environmental chamber set to maintain the target temperature of $20 \pm 2^{\circ}$ C. All organisms were observed for mortality, immobility and signs of toxicity at 24 and 48 hours of exposure.

Results

The results of the rangefinding test are included in the attached table. One control daphnid was lethargic at 24 and 48 hours. All other control daphnids and all daphnids in the treatment groups were normal in appearance and behavior throughout the 48-hour exposure period. Based on the nominal WAF concentrations, the 48-hour EL50 value for the rangefinding test was estimated to be greater than 1000 mg/L, the highest loading rate tested. No effects were seen at the highest loading rate used in the test (no observed effect level = 1000 mg/L loading rate).

PETROLEUM COKE

RESULTS OF AN EXPLORATORY NON-GLP RANGEFINDING TEST WITH Daphnia magna

STUDY:

Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test with

the Cladoceran (Daphnia magna)

SPONSOR:

American Petroleum Institute

PROJECT NO.:

472A-112

Nominal WAF Loading Rate ¹	Number Dead or Immobile in 2 Dead or Immobile / Number	Cumulative Percent	
(mg/L)	24 Hours ³	48 Hours	Mortality / Immobility
Negative Control	0/0/5 (1 C; 4 AN)	0/0/5 (1 C; 4 AN)	0
10	0 / 0 / 5 (5 AN)	0 / 0 / 5 (5 AN)	0
100	0 / 0 / 5 (5 AN)	0 / 0 / 5 (5 AN)	0
1000	0 / 0 / 5 (5 AN)	0/0/5 (5 AN)	0

Test solutions were prepared as WAFs by mixing test material into well water for 24 hours and allowing the material to settle for one hour before decanting the solution into test chambers. Test chambers were glass jars filled completely with no headspace, with Teflon-lined caps. Observations: AN = appear normal; C = lethargic. Test solutions were renewed at 24 hours.

- 55 -

Appendix 2

Protocol, Amendments and Deviations

PROTOCOL

PETROLEUM COKE: A 48-HOUR STATIC-RENEWAL ACUTE IMMOBILISATION TEST WITH THE CLADOCERAN (Daphnia magna)

Part I of OECD Guideline 202

and

U.S. EPA OPPTS Number 850.1010

Submitted to

American Petroleum Institute 1220 L Street, N.W. Washington, DC 20005

Wildlife International, Ltd.

8598 Commerce Drive Easton, Maryland 21601 (410) 822-8600

March 30, 2004

- 2 -

-	
	UR STATIC-RENEWAL ACUTE HE CLADOCERAN (<i>Daphnia magna</i>)
SPONSOR:	American Petroleum Institute 1220 L Street, N.W. Washington, DC 20005
SPONSOR'S REPRESENTATIVE:	
SPONSOR'S TECHNICAL STUDY MONITOR:	
TESTING FACILITY:	Wildlife International, Ltd. 8598 Commerce Drive Easton, Maryland 21601
STUDY DIRECTOR:	Wildlife International, Ltd.
LABORATORY MANAGEMENT:	
FOR LABORAT	TORY USE ONLY
Proposed Dates: To Be Amand Experimental Start Date:	Experimental
B Comments	Experimental Termination Date:
Experimental Start Date:	Experimental Termination Date:
Experimental Start Date: Project No.: 472A-112	Experimental Termination Date:
Experimental Start Date: Project No.: 472A-112 Test Concentrations: Test Substance No.: 6485 Reference Start Substance No.: 6485	Experimental Termination Date:
Experimental Start Date: Project No.: 472A-112 Test Concentrations:	Experimental Termination Date:
Experimental Start Date: Project No.: 472A-112 Test Concentrations: Test Substance No.: 6485 Reference Start Substance No.: 6485	Experimental Termination Date: ubstance No. (if applicable):
Experimental Start Date: Project No.: 472A-112 Test Concentrations: Test Substance No.: 6485 Reference Start Substance No.: 6485	Experimental Termination Date: ubstance No. (if applicable):
Experimental Start Date: Project No.: 472A-112 Test Concentrations: Test Substance No.: 6485 Reference Start Substance No.: 6485	Experimental Termination Date:

- 3 -

INTRODUCTION

Wildlife International, Ltd. will conduct a 48-hour static-renewal acute immobilisation test to determine the effects of water soluble components of petroleum coke on the cladoceran, *Daphnia magna*, for the Sponsor at the Wildlife International, Ltd. aquatic toxicology facility in Easton, Maryland. Petroleum coke is defined as the product formed by subjecting the heavy tar-like residue remaining following oil refining to high temperatures and pressures. It consists of primarily elemental carbon with considerably smaller amounts of hydrocarbons, sulfur and trace amounts of heavy metals. The study will be performed based on procedures in OECD Guideline for Testing of Chemicals, 202 *Part I - 24H EC 50 Acute Immobilisation Test* (1) and U.S. Environmental Protection Agency Series 850 - Ecological Effects Test Guidelines OPPTS Number 850.1010: *Aquatic Invertebrate Acute Toxicity Test, Freshwater Daphnids* (2). Raw data for all work performed at Wildlife International, Ltd. and a copy of the final report will be filed by project number in archives located on the Wildlife International, Ltd. site, or at an alternative location to be specified in the final report.

OBJECTIVE

The objective of this study is to determine the acute effects of water soluble components of petroleum coke on the cladoceran, *Daphnia magna*, during a 48-hour exposure under static-renewal test conditions.

EXPERIMENTAL DESIGN

Daphnia magna will be exposed to a geometric series of at least five water accommodated fractions (WAF) of the test substance and a negative (dilution water) control for 48 hours. Two replicate test chambers will be maintained for each treatment and the control group, with 10 Daphnia magna in each test chamber for a total of 20 Daphnia magna per treatment level. WAF solutions and control water will be renewed at approximately 24-hour intervals. At each renewal period, fresh WAF solutions will be prepared and the daphnids will be transferred from the old solutions to the new solutions.

WAF loading rates will be selected in consultation with the Sponsor, and will be based upon information such as the results of exploratory range-finding toxicity data, known toxicity data, physical/chemical properties of the test substance or other relevant information. For this test, the term

- 4 -

loading rate means the total amount of test substance added to the dilution water volume (mg/L) to achieve the respective WAF solution. Generally, each test substance loading rate in the definitive test will be at least 60% of the next higher loading rate unless information concerning the concentration-effect curve indicates that a different dilution factor would be more appropriate. Water samples will be collected at specified intervals for analysis of the selected constituents of petroleum coke. Results of analyses will be used to calculate mean measured test concentrations.

To control bias, daphnids will be indiscriminately assigned to exposure chambers at test initiation. No other potential sources of bias are expected to affect the results of the study. Observations of mortality/immobility and other clinical signs will be made throughout the 48-hour test period. Cumulative percent mortality/immobility observed in the treatment groups will be used to calculate, when possible, EL50 values at 24 and 48 hours. The no-observed-effect level (NOEL) will be determined by visually interpreting the mortality, immobility and clinical observation data.

MATERIALS AND METHODS

Test Substance

The test substance is green coke (CAS Number 64741-79-3) sieved to approximately 2 mm particle size. Information on the characterization of test, control or reference substances is required by OECD Principles of Good Laboratory Practice (3) and TSCA Good Laboratory Practice Standards (40 CFR Part 792) (4). The Sponsor is responsible for providing Wildlife International, Ltd. written verification that the test substance has been characterized according to GLPs prior to its use in the study. If written verification of GLP test substance characterization is not provided to Wildlife International, Ltd., it will be noted in the compliance statement of the final report.

The Sponsor is responsible for all information related to the test substance and agrees to accept any unused test substance and/or test substance containers remaining at the end of the study.

Preparation of Water Accommodated Fraction Solutions

The test substance will be administered to the test organism in water in the form of water accommodated fractions. The test substance will be mixed directly with dilution water on a weight:volume basis. Each WAF will be prepared individually in a 13.2 L Pyrex® aspirator bottle with tubulation by mixing an amount of the test substance in approximately 12 L of dilution water

- 5 -

using a Teflon®-coated stir bar on a magnetic stir plate. Care will be taken to maintain a vortex depth of approximately 30% of the test solution height. The length of the mixing time in the definitive test will be determined based on results of the WAF equilibration trial. Following the mixing period, the WAF solutions will then be allowed to settle for approximately 1 hour and the test solution will be decanted off the top (or bottom, as appropriate).

Justification for Route of Exposure

The test substance will be administered to the test organism in water in the form of water accommodated fractions. The route of exposure is justified because it is the primary exposure pathway of aquatic organisms to chemicals.

Test Organism

The cladoceran, *Daphnia magna*, has been selected as the test species for this study. Daphnids are representative of an important group of aquatic invertebrates, and have been selected for use in the test based upon past use history and ease of culturing in the laboratory. Daphnid neonates to be used in the test will be less than 24 hours old and will be obtained from cultures maintained at Wildlife International, Ltd., Easton, Maryland. The identity of the species will be verified by the supplier of the original culture or by Wildlife International, Ltd. personnel using appropriate taxonomic keys such as Pennak (5).

Daphnids will be cultured in water from the same source and at approximately the same temperature as will be used during the test. Daphnids in the cultures producing neonates for the test will be held for at least 10 days prior to collection of the neonates for testing. Adult daphnids in the culture will produce an average of at least 3 young per adult per day over the 7 day period prior to the test. Neonates from daphnids that show signs of disease or stress will not be used as test organisms. Daphnids in holding that produce ephippia also will not be used to supply neonates for testing.

Daphnids in the cultures will be fed once daily. The diet will be a mixture of yeast, Cerophyll®, and trout chow (YCT), supplemented with a suspension of the freshwater green alga Selenastrum capricornutum. Adults are fed during the 24-hour period prior to test initiation, but neonates will not be fed during the test. Specifications for acceptable levels of contaminants in daphnid diets have not been established. However, there are no known levels of contaminants

- 6 -

reasonably expected to be present in the diet that are considered to interfere with the purpose or conduct of the test.

Neonates will be obtained for testing from at least three individual adults that have produced at least one previous brood. At test initiation, the neonates will be collected from cultures and transferred to glass beakers. The daphnids will then be released into the test chambers below the water surface using a wide bore pipette.

Dilution Water

Water used for the culturing and testing of daphnids will be obtained from a well approximately 40 meters deep located on the Wildlife International, Ltd. site. The water will be passed through a sand filter and pumped into a 37,800-L storage tank where the water will be aerated with spray nozzles. Prior to use the water will be filtered to 0.45 µm in order to remove fine particles and may be UV sterilized. Water used for culturing and testing is characterized as moderately hard. Typical values for hardness, alkalinity, pH and specific conductance are approximately:

Hardness, mg/L as CaCO ₃	145
Alkalinity, mg/L as CaCO ₃	190
рН	8.1
Specific Conductance, µmhos/cm (µS/cm)	330

Hardness, alkalinity, pH and specific conductance will be measured weekly to monitor the consistency of the well water. Means and ranges of the measured parameters for the four-week period preceding the test will be provided in the final report. Analyses will be performed at least once annually to determine the concentrations of selected organic and inorganic constituents of the well water and results of the most recent GLP-compliant analyses will be summarized in the final report.

Test Apparatus

Test chambers will be glass jars with Teflon®-lined lids. The jars will be completely filled with test solution to minimize headspace. The bottles will be indiscriminately positioned in a temperature-controlled water bath or an environmental chamber. Test chambers will be labelled with project number, replicate and test concentration.

- 7 -

Environmental Conditions

Ambient room light will be used to illuminate the test systems. Fluorescent tubes (e.g., Colortone® 50) that emit wavelengths similar to natural sunlight will be controlled with an automatic timer to provide a photoperiod of 16 hours of light and 8 hours of darkness. A 30-minute transition period of low light intensity will be provided when lights go on and off to avoid sudden changes in light intensity. The light intensity over a control replicate will be measured at the beginning of the test using a SPER Scientific Ltd. light meter or equivalent.

The test will be conducted at a target temperature of $20 \pm 2^{\circ}$ C. Temperature will be monitored and recorded continuously during the entire test in a beaker of water adjacent to the test using a Fulscope ER/C Recorder (1900 J Series Model A) or equivalent. Recorder measurements will be verified with a liquid-in-glass thermometer prior to test initiation.

Dissolved oxygen, pH and temperature will be measured in each replicate of the treatment and control groups at test initiation, before and after renewal at 24 hours, and at test termination. Dissolved oxygen will be measured using a Thermo Orion Model 850Aplus dissolved oxygen meter, or equivalent. Measurements of pH will be made using a Thermo Orion 720Aplus pH meter, or equivalent. Temperature measurements will be made using a liquid-in-glass thermometer.

Hardness, alkalinity, total organic carbon (TOC) and specific conductance will be measured in a sample of the dilution water collected at test initiation. Hardness and alkalinity measurements will be made based on procedures in *Standard Methods for the Examination of Water and Wastewater* (6). Specific conductance will be measured using a Yellow Springs Instruments Model 33 Salinity-Conductivity-Temperature meter, or equivalent. Total organic carbon will be measured using a Shimadzu Model 5000 TOC analyzer, or equivalent.

Observations pertaining to test substance solubility (e.g., surface slicks, precipitates, etc.) also will be recorded.

-8-

Biological Measurements

Observations of immobilisation and other clinical signs of toxicity will be made at test initiation, between 0-24 hours after test initiation, at 24 hours and 48 hours \pm 1 hour. Immobilisation is defined as the inability to swim within 15 seconds after gentle agitation of the test container.

Sampling for Analytical Measurements

Water samples will be decanted from each WAF preparation vessel at the beginning of the test and collected from each replicate test chamber after 24 hours and at the end of the test to determine concentrations of the compounds and elements of interest in petroleum coke (see Table 1). In the event that 100% mortality occurs in any treatment, then sampling of that treatment will terminate following the next sampling interval. Samples will be collected at mid-depth from each test chamber, analyzed immediately or placed in a glass container with zero headspace and stored under refrigeration until analyzed. Samples will be analyzed for the components of petroleum coke listed in Table 1. The sample scheme is summarized below:

PROPOSED NUMBERS OF VERIFICATION SAMPLES

F	0.11	24 Hours	48 Hours
Experimental Group	0 Hours	(Old)	(Old)
Control	1	2	2
Level 1-Low Concentration	1	2	2
Level 2	1	2	2
Level 3	1	2	2
Level 4	1	2	2
Level 5	1	2	2
	6	12	12

Total Number of Verification Samples = 30

The above numbers of samples represent those collected from the test and do not include quality control (QC) samples such as matrix blanks and fortifications prepared and analyzed during the analytical chemistry phase of the study. At the discretion of the Study Director, water samples from one or more appropriate test chambers will be collected and analyzed if an analytical error in

-9-

sampling or analysis is suspected. The reason for the additional samples will be documented in the raw data and summarized in the final report.

Analytical Chemistry

Chemical analysis of the samples will be performed by Wildlife International, Ltd. The analytical method used will be based upon chromatographic methodology and/or ICP analysis for metals. The methodology used to analyze the test samples will be documented in the raw data and summarized in the final report.

Conditions for the Validity of the Test

The following criteria will be used to judge the validity of the test:

- immobility of the daphnids in the negative control group will not exceed 10% by the end of the test, and
- the dissolved oxygen concentration will be at least 60% the air-saturation value throughout the test.

Data Analyses

In the definitive multiple-concentration test, the mortality/immobility pattern will be used to calculate the 24 and 48-hour EL50 concentrations. The EL50 values will be based on nominal loading rates and calculated using the computer software of C.E. Stephan (7). The program was designed to calculate the EL50 value and the 95% confidence interval by probit analysis, the moving average method, and the binomial probability method (8,9,10). The method used will depend upon the immobility pattern and its suitability for each method. Additional analysis of data may be conducted if deemed appropriate by the Study Director. The results of the analysis will be documented in the raw data and summarized in the final report. A no-observed-effect level (NOEL) will be reported if it is defined by the concentration-response pattern. The maximum WAF level causing 0% immobility and the minimum WAF level causing 100% immobility will be presented, if possible.

- 10 -

RECORDS TO BE MAINTAINED

Records to be maintained for data generated by Wildlife International, Ltd. will include, but not be limited to:

- 1. A copy of the signed protocol.
- 2. Identification and characterization of the test substance, if provided by the Sponsor.
- 3. Dates of initiation and termination of the test.
- 4. Test organism culture records.
- 5. Stock solution calculation and preparation, if applicable.
- 6. Observations.
- 7. Water chemistry results (e.g., hardness and alkalinity).
- If analytical verification of the test substance concentrations is done, the methods used to analyze test substance concentrations and the results of analytical measurements.
- 9. Statistical calculations, if applicable.
- 10. Test conditions (light intensity, photoperiod, etc.).
- 11. Calculation and preparation of test concentrations.
- 12. Results of the range-finding tests, if performed.
- 13. Copy of final report.

FINAL REPORT

A final report of the results of the study will be prepared by Wildlife International, Ltd. The report will include, but not be limited to the following, when applicable:

- 1. Name and address of the facility performing the study.
- Dates upon which the study was initiated and completed, and the definitive experimental start and termination dates.
- A statement of compliance signed by the Study Director addressing any exceptions to Good Laboratory Practice Standards.
- 4. Objective and procedure, as stated in the approved protocol, including a copy of the final protocol, and all amendments and deviations to the protocol.
- 5. The test substance identification including name, chemical abstract number or code number, strength, purity, composition, and other information provided by the Sponsor.

- 11 -

- Stability and solubility of the test substance under the conditions of administration, if provided by the Sponsor.
- 7. A description of the methods used to conduct the test.
- A description of the test organisms, including the source, scientific name, age or life stage, and feed types.
- 9. A description of the preparation of the test solutions.
- 10. The methods used to allocate organisms to test chambers and begin the test, the number of organisms and chambers per treatment, the duration of the test, and environmental conditions during the test.
- 11. A description of circumstances that may have affected the quality or integrity of the data.
- 12. The name of the Study Director and the names of other scientists, professionals, and supervisory personnel involved in the study.
- 13. A description of the transformations, calculations, and operations performed on the data, the concentration mortality curve, a summary and analysis of the biological data and analytical chemistry data, and a statement of the conclusions drawn from the analyses.
- 14. Statistical methods used to evaluate the data including copies of the outputs from statistical programs.
- 15. A graph of the concentration-response curve at the end of the test, if possible. If the data is conducive to evaluation by probit analysis, the slope of the concentration-response curve will be reported.
- 16. The signed and dated reports of each of the individual scientists or other professionals involved in the study.
- 17. The location where raw data and final report are to be stored.
- 18. A statement prepared by the Quality Assurance Unit listing the dates that study inspections and audits were made and the dates of any findings reported to the Study Director and Management.
- 19. If it is necessary to make corrections or additions to a final report after it has been accepted, such changes will be made in the form of an amendment issued by the Study Director. The amendment will clearly identify the part of the final report that is being amended and the reasons for the amendment, and will be signed by the Study Director.

- 12 -

CHANGING OF PROTOCOL

Planned changes to the protocol will be in the form of written amendments signed by the Study Director and approved by the Sponsor's Representative. Amendments will be considered as part of the protocol and will be attached to the final protocol. Any other changes will be in the form of written deviations signed by the Study Director and filed with the raw data. All changes to and deviation from the protocol will be indicated in the final report.

GOOD LABORATORY PRACTICES

This study will be conducted in accordance with OECD Principles of Good Laboratory Practice (ENV/MC/CHEM (98) 17) (3) and TSCA Good Laboratory Practice Standards (40 CFR Part 792) (4). Each study conducted by Wildlife International, Ltd. is routinely examined by the Wildlife International, Ltd. Quality Assurance Unit for compliance with Good Laboratory Practices, Standard Operating Procedures and the specified protocol. A statement of compliance with Good Laboratory Practices will be prepared for all portions of the study conducted by Wildlife International, Ltd. The Sponsor will be responsible for compliance with Good Laboratory Practices for procedures performed by other laboratories (e.g., residue analyses or pathology). Raw data for all work performed at Wildlife International, Ltd. and a copy of the final report will be filed by project number in archives located on the Wildlife International, Ltd. site or at an alternative location to be specified in the final report.

- 13 -

REFERENCES

- Organization for Economic Cooperation and Development. 1984. OECD Guideline 202: Daphnia sp., Acute Immobilisation Test and Reproduction Test. Adopted 4 April 1984. Addendum 3 to C(81)30(Final).
- 2 U.S. Environmental Protection Agency. 1996. Series 850- Ecological Effects Test Guidelines (draft), OPPTS Number 850.1010: Aquatic Invertebrate Acute Toxicity Test, Freshwater Daphnids.
- 3 **OECD.** 1998. OECD Principles of Good Laboratory Practice ENV/MC/CHEM (98) 17.
- 4 Title 40 of the Code of Federal Regulations, Part 792. 1989. Toxic Substances Control Act (TSCA) Good Laboratory Practice Standards.
- 5 Pennak, R.W. 1978. Freshwater Invertebrates of the United States. 2nd Ed. 365 p.
- 6 APHA, AWWA, WPCF. 1998. Standard Methods for the Examination of Water and Wastewater. 20th Edition.
- 7 Stephan, C.E. 1978. U.S. EPA, Environmental Research Laboratory, Duluth, Minnesota. Personal communication.
- 8 Finney, D.J. 1971. Statistical Methods in Biological Assay. Second edition. Griffin Press, London.
- 9 Thompson, W.R. Bacteriological Reviews. Vol. II, No. 2. Pp. 115-145.
- Stephan, C.E. 1977. "Methods for Calculating an LC50", Aquatic Toxicology and Hazard Evaluations. American Society for Testing and Materials. Publication Number STP 634, pp 65-84.

- 14 -

Table 1.

Analytes of Interest in Petroleum Coke

РАН	Metals and Sulfur
Acenaphthene	Nickel
Acenaphthylene	Vanadium
Anthracene	Iron
Benzo(a)anthracene	Copper
Benzo(a)pyrene	Selenium
Benzo(b)fluoranthene	Arsenic
Benzo(g,h,i)perylene	Sulfur
Benzo(k)fluoranthene	
Chrysene	
Dibenzo(a,e)pyrene	
Dibenz(a,h)anthracene	
Fluoranthene	
Fluorene	
Indeno(1,2,3-cd)pyrene	
Naphthalene	
Perylene	
Phenanthrene	
Pyrene	

Project Number 472A-112 Page 1 of 4

AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test with

the Cladoceran (Daphnia magna)

PROTOCOL NO.: 472/033004/DAP/SUB472 AMENDMENT NO.: 1

SPONSOR: American Petroleum Institute **PROJECT NO.: 472A-112**

EFFECTIVE DATE: March 8, 2005

AMENDMENT: Page 2:

ADD: Proposed Dates: Experimental Start Date (OECD): March 21, 2005

Experimental Start Date (EPA): March 22, 2005

Experimental Termination Date: March 24, 2005

Test Concentrations: 1000 mg/L

REASON: This information was not available at the time the protocol was signed by the

Study Director.

AMENDMENT: Experimental Design, Pages 3 and 4:

CHANGE:

Daphnia magna will be exposed to a geometric series of at least five water accommodated fractions (WAF) of the test substance and a negative (dilution water) control for 48 hours. Two replicate test chambers will be maintained for each treatment and the control group, with 10 Daphnia magna in each test

chamber for a total of 20 Daphnia magna per treatment level.

TO: Daphnia magna will be exposed to a single water accommodated fraction

(WAF) of the test substance and a negative (dilution water) control for 48 hours. The WAF loading rate will be 1000 mg/L. Three replicate test chambers will be maintained for each treatment and the control group, with 10 Daphnia magna in

each test chamber for a total of 30 Daphnia magna per treatment level.

DELETE: Results of analyses will be used to calculate mean measured test concentrations.

REASON: A limit test will be conducted.

AMENDMENT: Experimental Design, Page 4, 1st Paragraph:

DELETE: Generally, each test substance loading rate in the definitive test will be at least

60% of the next higher loading rate unless information concerning the concentration-effect curve indicates that a different dilution factor would be

REASON: Because the test will be run at a single limit concentration, discussion of dilution

factors becomes irrelevant.

Project Number 472A-112 Page 2 of 4

Wildlife International, Ltd.

AMENDMENT: Experimental Design, Page 4, 2nd Paragraph:

CHANGE: Cumulative percent mortality/immobility observed in the treatment groups will

be used to calculate, when possible, EL50 values at 24 and 48 hours.

TO: Cumulative percent mortality/immobility observed in the treatment group will

be used to determine whether the 24 and 48-hour EL50 values are greater than

or less than the 1000 mg/L WAF loading rate used in the test.

REASON: EL50 values cannot be calculated in a limit test. Therefore, the response

observed in the treatment group will provide a relative indication of where the

EL50 might lie.

AMENDMENT: Preparation of Water Accommodated Fraction Solutions, Pages 4 and 5:

CHANGE: The length of the mixing time in the definitive test will be determined based on

results of the WAF equilibration trial.

TO: The test solution will be mixed for approximately 24 hours.

REASON: The WAF equilibration trial showed no effect of mixing time on concentrations

of the analytes of interest. Therefore, it is not necessary to stir the WAF

mixtures beyond 24 hours.

AMENDMENT: Sampling for Analytical Measurements, Page 8:

CHANGE: Replace the entire section with the following.

TO: Water samples will be decanted from each WAF preparation vessel at the

beginning of the test, and pooled from each replicate test chamber after 24 hours and at the end of the test to determine concentrations of the compounds and elements of interest in petroleum coke (see Table 1). In the event that 100% mortality occurs in the treatment group, then sampling will cease following the next sampling interval. One set of samples will be collected and analyzed for selected organic compounds, and a second set of samples will be collected at middepth from the test chambers and stored with zero headspace until the end of the test. Samples for organic analyses should be preserved by storage at 4°C. Samples for inorganic analyses should be preserved by treating the sample with nitric acid (HNO₃) to a pH of <2. The sample scheme is summarized below:

Project Number 472A-112 Page 3 of 4

Wildlife International, Ltd.

PROPOSED NUMBERS OF VERIFICATION SAMPLES

Experimental Group	0-Hours 1	24-Hours ¹ (old)	48-Hours ¹ (old)
Control	2	2	2
Treatment (1000 mg/L loading)	2	2	2
	4	4	4

At each sampling interval, one set of samples will be collected and analyzed for selected organic compounds, and a second set of samples will be collected and analyzed for selected inorganic elements.

Total Number of Verification Samples = 12

The above numbers of samples represent those collected from the test and do not include quality control (QC) samples such as matrix blanks and fortifications prepared and analyzed during the analytical chemistry phase of the study. At the discretion of the Study Director, water samples from one or more appropriate test chambers will be collected and analyzed if an analytical error in sampling or analysis is suspected. The reason for the additional samples will be documented in the raw data and summarized in the final report.

REASON:

The change to a limit test necessitated a revision in the numbers of samples collected for analytical verification.

AMENDMENT: Data Analyses, Page 9:

CHANGE:

In the definitive multiple-concentration test, the mortality/immobility pattern will be used to calculate the 24 and 48-hour EL50 concentrations. The EL50 values will be based on nominal loading rates and calculated using the computer software of C.E. Stephan (7). The program was designed to calculate the EL50 value and the 95% confidence interval by probit analysis, the moving average method, and the binomial probability method (8,9,10). The method used will depend upon the immobility pattern and its suitability for each method.

TO:

In the definitive limit test, mortality/immobility will be used to determine if the 24 and 48-hour EL50 concentrations are greater than or less than the nominal limit WAF loading rate.

REASON:

Statistical analyses will not be conducted in the limit test.

- 73 -

Wildlife International, Ltd.

Project Number 472A-112 Page 4 of 4

AMENDMENT: Table 1, Page 14:

ADD: 1-methylnaphthalene

2- methylnaphthalene

REASON: The Sponsor requested the addition of these two compounds to the list of

analytes of interest.

22 March 2105
DATE

2d Mar 05
DATE

3/15/05
DATE

Project Number 472A-112 Page 1 of 1

AMENDMENT TO STUDY PROTOCOL

STUDY TITLE: Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test with

the Cladoceran (Daphnia magna)

AMENDMENT NO.: 2 PROTOCOL NO.: 472/033004/DAP/SUB472

SPONSOR: American Petroleum Institute **PROJECT NO.: 472A-112**

EFFECTIVE DATE: March 18, 2005

AMENDMENT: Sampling for Analytical Measurements, Page 8 (as amended in Amendment #1):

Samples will be collected at mid-depth from the test chambers and stored with CHANGE:

zero headspace until the end of the test. Samples for organic analyses should be preserved by storage at 4°C. Samples for inorganic analyses should be preserved by treating the sample with nitric acid (HNO₃) to a pH of <2.

TO: Samples will be collected at mid-depth from the test chambers and stored until the end of the test. Samples for organic analyses should be preserved by storage

at 4°C with zero headspace. Samples for inorganic analyses should be preserved

by the addition of sufficient nitric acid (HNO₃) to achieve a final acid

concentration of 2%.

The procedures specified in Amendment #1 did not accurately reflect the REASON:

procedures to be used for the preservation of samples collected for inorganic

DATE

DATE

March 2005

DATE

March 24, 2005

DATE

Project No.: 472A-112 Page 1 of 1

DEVIATION TO STUDY PROTOCOL

STUDY TITLE:

Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test

with the Cladoceran (Daphnia magna)

PROTOCOL NO.: 472/033004/DAP/SUB472

DEVIATION NO.: 1

SPONSOR: American Petroleum Institute

PROJECT NO.: 472A-112

DATE OF DEVIATION: March 22 and 23, 2005

DEVIATION:

Dissolved oxygen, pH and temperature were measured in the newly prepared

WAF solutions of each treatment and control group, rather than in each

replicate, at test initiation and at the 24-hour renewal.

REASON:

Error in the protocol. In order for the test chambers to be completely filled with no headspace, no solution could be collected from the replicates at the start of each renewal period. Therefore, the measurements were taken from a sample of the batch WAF solutions. This deviation from the protocol had no adverse

impact upon the results or interpretation of the study.

29 March 2005 DATE

29 Mu 05
DATE

Project No.: 472A-112

Page 1 of 1

DEVIATION TO STUDY PROTOCOL

STUDY TITLE:

Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test

with the Cladoceran (Daphnia magna)

PROTOCOL NO.: 472/033004/DAP/SUB472

DEVIATION NO.: 2

SPONSOR: American Petroleum Institute

PROJECT NO.: 472A-112

DATE OF DEVIATION: March 24, 2005

DEVIATION:

Water samples were not analyzed to determine the concentration of perylene, one analyte of interest in petroleum coke listed in Table 1 of the protocol.

REASON:

It was determined in method development work that the analyte co-eluted with another analyte of interest, and the concentration in the water samples would not be evaluated during the definitive test. This deviation from the protocol had no

adverse impact upon the results or interpretation of the study.

8 June 2005

DATE

8 June 05

Project No.: 472A-112

Page 1 of 1

DEVIATION TO STUDY PROTOCOL

STUDY TITLE:

Petroleum Coke: A 48-Hour Static-Renewal Acute Immobilisation Test

with the Cladoceran (Daphnia magna)

PROTOCOL NO.: 472/033004/DAP/SUB472

DEVIATION NO.: 3

SPONSOR: American Petroleum Institute

PROJECT NO.: 472A-112

DATE OF DEVIATION: September 12, 2005

DEVIATION:

The summary of the water analysis for selected organic and inorganic constituents that was included in the study report was from the most recent water analysis, but was not from the most recent GLP-compliant analysis, as

indicated in the protocol.

REASON:

The periodic water analyses are no longer conducted under GLP Standards. The most recent GLP-compliant analysis was conducted in 2002. The most recent non-GLP analysis conducted in 2004 was included in the report since it was considered to be more representative of the dilution water used in the test. This deviation from the protocol had no adverse impact upon the results or

interpretation of the study.

09 June 2006

DATE

DATE

DATE

- 78 -

Appendix 3

Test Article Selection

- 79 -

THE FACE CONSULTANTS INC.
Post Office Box 53473 Houston, Texas 77052 853/351-7800 Fax 853/351-7887
A Member of Jacobs Engineering Group

February 22, 2001

American Petroleum Institute 1220 L Street, NW Washington, D.C. 20005-4070

Attached is Pace's report covering Task 1 and 2 entitled "U.S. Delayed Coker Petroleum Coke Quality Survey 1998-1999."

We would be pleased to answer any questions concerning this work for API. Please contact me at 832/351-7811 or email

For PACE

Attachment

U.S. DELAYED COKER PETROLEUM COKE QUALITY SURVEY 1998-1999

INTRODUCTION

In 1998 the United States Environmental Protection Agency (EPA) challenged chemical producers and importers to provide voluntarily basic toxicity information on their high production volume (HPV) chemicals, defined as those chemicals which are produced in or imported to the U.S. in amounts greater than 1 million pounds per year. The goal of the HPV Challenge Program is to ensure that the American public has access to basic information about the hazards associated with chemicals manufactured and used in the greatest quantities in the United States. It is designed to generate the complete hazard screening data for HPV commercial chemicals.

The American Petroleum Institute (API) serves as administrator of the Petroleum HPV Testing Group, a consortium made up of 72 member companies from API, the National Petrochemical & Refiners Association (NPRA), the Gas Producers Association (GPA) and the Asphalt Institute. These companies represent 92% of the nation's refinery capacity. The Petroleum HPV Testing Group has sponsored 396 substances produced and used by the nation's petroleum industry to meet the EPA's HPV challenge.

Pace was retained by the API HPV Testing Group to assist in identifying potential sources of U.S. petroleum coke samples that could be used in the HPV testing program. As the first step in this process, Pace undertook a review of its quarterly petroleum coke production data to help characterize current U.S. petroleum coke production qualities. Pace has now completed the review of its 1998 and 1999 quarterly petroleum coke production data for all U.S.-based delayed cokers. The results of this review are discussed below.

METHODOLOGY

Pace's petroleum coke production database was used to determine quality characteristics of petroleum coke produced by U.S. refineries. Pace has conducted a survey of U.S. petroleum coker production on a quarterly basis since the second quarter of 1983. Refineries provide the bulk of the data, but some data are also gathered from other market participants. These data are maintained in a database from which the 1998 and 1999 quarterly data were extracted for this study. It was decided that data analysis would concentrate on delayed cokers (excluding needle cokers) since for 1999 our delayed coker data set includes 92+% of all the petroleum coke produced in the United States. Accordingly, fluid and Flexicokers¹ were removed from the data set.

Needle cokers were removed from the delayed coker database because needle cokers represent a special subset of delayed coking production. Needle coke differences include:

¹ Flexicoke is a proprietary coking process developed by Exxon. It involves partially gasifying fluid coke.

- 1. Needle coke quality is much higher than other delayed coke
- 2. Needle coke is produced using different feedstock & coking operational procedures because it is a product, not a by-product like other delayed cokes
- 3. The quantity of needle coke produced is very small
- Needle coke is handled very carefully due to its high price (typically > \$350/metric ton)

SUMMARY AND DATA ANALYSIS

These data were analyzed to determine the ton-weighted average petroleum coke qualities of sulfur (wt%), nickel (ppm), vanadium (ppm), and volatile material (wt%). All data are presented on a dry basis. The results are presented in Table 1 below.

TABLE 1

					QUALITY RLY AVER		RY	
Sulfur, Wt% Nickel, ppm Vanadium, ppm Vol. Mat., Wt%								
Quarter	1998	1999	1998	1999	1998	1999	1998	1999
1Q	4.15	4.11	286	275	758	801	10.9	10.5
2Q	4.22	4.22	277	283	811	821	10.8	11.0
3Q	4.21	4.21	277	282	811	857	10.9	10.9
40	4.21	4.22	282	276	854	852	10.7	10.9
Ton-Wt Ava	4.20	4.19	280	279	809	833	10.8	10.8

Ton-weighted average qualities for each quarter were calculated in the following manner:

Σ (quality value)_{delayed coker} * (quarterly production)_{delayed coker}

Total quarterly production

Where:

quality value = sulfur, vanadium, nickel or volatile content of petroleum coke produced by each delayed coker

quarterly production = petroleum coke produced by that delayed coker

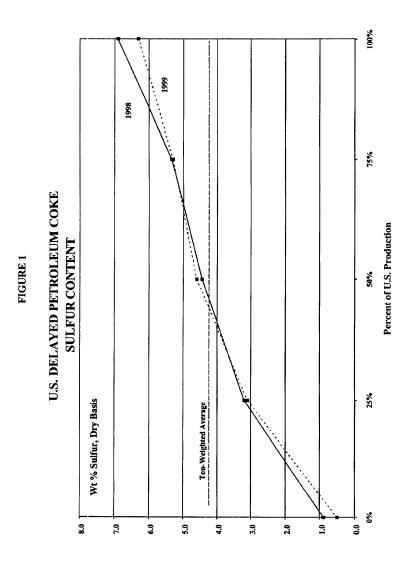
THE PACE CONSULTANTS INC.

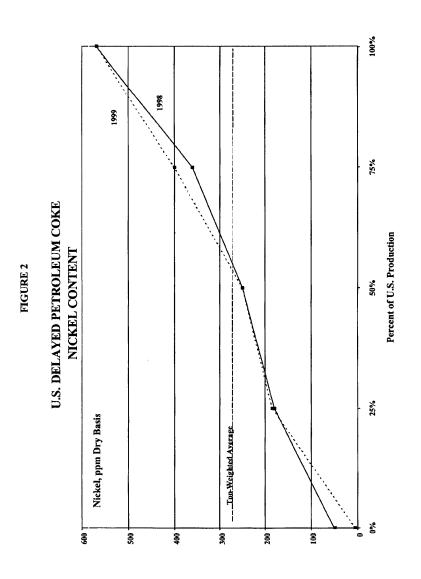
-2-

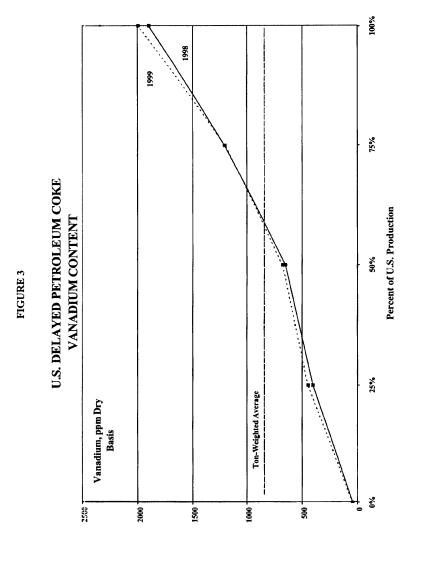
Pace next reviewed the data to determine a ton-weighted frequency distribution for each of the qualities listed. The results of this analysis are presented in Table 2 and in Figures 1 through 4.

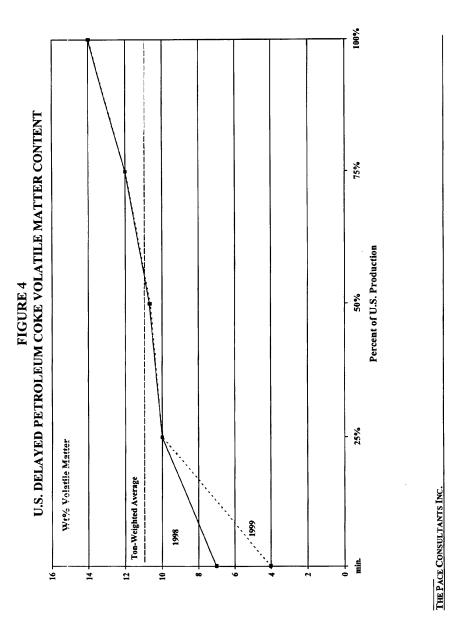
TABLE 2

	U.S. DEL		TROLEUI Y PRODU				.RY	
Cumulative Production	Sulfur, 1998	Wt% 1999	Nickel, ppm 1998 1999		Vanadium, ppm 1998 1999		Vol, Wt% 1998 1999	
min.	0.90	0.50	50	5	45	45	7.0	4.0
25%	3.20	3.10	180	185	400	445	10.0	10.0
50%	4.45	4.60	250	250	650	675	10.7	10.7
75%	5.34	5.30	360	400	1205	1200	12.0	12.0
100%	6.90	6.30	568	568	1900	2000	14.0	14.0


Quality quartiles for each year were calculated in the following manner:


Annual data were sorted according to each specific quality value (e.g., sulfur, vanadium, nickel, and volatile content) and the cumulative production of petroleum coke by delayed coker was calculated. Quartiles were then calculated for the annual production total, and the quality value at the cumulative total that equaled each quartile was used to determine the quality for that quartile.


TRENDS


Comparing the ton-weighted averages to the 50% production quartile (i.e., the median) reveals the following trends:

- The weighted average nickel and vanadium content of U.S. delayed petroleum coke is higher than the median. This is a direct result of the increasing amount of heavy crudes, particularly Mexican and Venezuelan crudes, processed by U.S. refineries. Because these crudes produce petroleum cokes with nickel and vanadium contents that are significantly above the median, they skew the weighted average away from the median.
- Ton-weighted sulfur content is slightly below the median because some cokers produce
 petroleum cokes that are well below the median sulfur content (i.e., anode-grade coke
 which is calcined and primarily used to make anodes for the aluminum smelting
 industry).

- The sulfur content at the upper and lower ends of the quality spectrum was better in 1999 than in 1998. We believe the lower sulfur content in 1999 was a result of crude production cut-backs by OPEC (Organization of Petroleum Exporting Countries) and other crude oil producers. These producers preferentially reduced the production of their lower quality crude oils in order to minimize the production reductions of their higher quality (i.e. higher priced) crude oils. We see 1999 as an aberration in the general trend of increasing sulfur content in U.S. petroleum cokes.
- We expect the metals content and sulfur content of U.S. petroleum coke will deteriorate beginning in 2001 as new U.S. cokers scheduled to begin operations in the 2000-2002 time frame start up.
- The average volatile matter content is essentially equal to the median.

RECOMMENDATIONS

Pace identified candidate refineries for sampling based on the quality data from the third quarter of 2000, which is the most recent quarter for which data are available. It should be noted that these data may vary slightly from the 1998-1999 averages as increasing amounts of heavy crude are processed. Based on these data, Pace recommends the following candidates for sampling in support of the Petroleum HPV Testing Program:

DELAY				G PROGR MPLE CAI		s	
,		idate A		idate B	Candidate C		
	Value	Percentile	Value	Percentile	Value	Percentile	
Sulfur, Wt%	6.00	93	5.75	86	5.50	80	
Nickel, ppm	500	90	300	58	250	50	
Vanadium, ppm	1,500	84	1,200	75	1,000	65	
Volatiles, Wt%	10.00	25	12.00	75	13.00	88	

	TROLEUM HE		 	
	Cand Value	date D Percentile	Candi Value	date E Percentile
Sulfur, Wt%	4.20	43	5.50	80
Nickel, ppm	250	50	350	67
Vanadium, ppm	1,500	84	1,100	70
Volatiles, W1%	15.00	100	10.00	25

Our analysis ind:cates that some compromises will have to be made in obtaining a sample for the HPV program since no refinery's petroleum coke is in the upper 75th percentile in all four quality parameters we have evaluated. Additionally, we have spent some time and effort trying to find petroleum cokes which are sampled with automatic sampling equipment that has been bias tested and is operated by an independent laboratory. Unfortunately, we have found that the locations with the best sampling systems have petroleum cokes of generally better quality. Therefore, we do not believe that we will be able to find a "perfect" candidate petroleum coke.

While the sampling at the candidate refineries may not be ideal, the sampling and analysis data have been used for commercial transactions. Substantial quantities of petroleum coke from each of the candidate refineries have been sold in the petroleum coke market. Commercial transactions have relied on the laboratory results for determining quality bonus and penalties and conformance with contract quality specifications. Thus, the samples taken for the HPV study would conform to generally accepted industry sampling practice.

The sampling plan would be to have the sample analyzed for the quality parameters used in this screening analysis (i.e. sulfur, vanadium, nickel, volatile matter) as well as four other commonly tested quality parameters—gross calorific value (Btu/lb), moisture (%), ash (%), and Hardgrove Grindability Index (HGI)—to verify that the sample obtained is similar to the anticipated quality characteristics. This plan would assure that the sample submitted for detailed HPV testing conforms to our quality expectations.

We may not be able to receive authorization from a refinery to use a sample of their petroleum coke for the HPV test. Our present plan would be to approach Refineries B and C regarding obtaining a sample. In the event that these two refineries choose not to participate, then the choice would be either refinery A or E, which have high sulfur and metals but bw volatile content or refinery D, which has high vanadium and volatile matter but low sulfur content. (note: each of the five candidate refineries has a different corporate owner).

Pace requests that the HPV Committee confirm Pace's recommended plan to approach refineries B and C regarding obtaining an HPV sample. It is not necessary for the HPV committee to decide now on the preferred refinery to contact in the event that refineries B and C do not wish to participate in the program. However, we would suggest that the committee begin to think about this issue so that decisions can be made expeditiously in the event that refineries B and C choose not participate.

- 89 -

Appendix 4

AVEKA, Inc. Particle Processing Report

Date: May 29, 2003

Make Order #: 5369

Company Name: API

Contact Person:

Material: Green Petroleum Coke

Objective: Task 1: Hammermill, Ball-mill and Classify Petroleum Coke to a mean particle size less than 3.6 microns. Task 2: Crush and Classify petroleum coke to a mean particle size of 2 mm.

Equipment: Homoloid JT Hammermill (SN # JT-694) with 0.0093 screen

5 Gallon Ball-mill with 0.25 inch alumina media

Majac A-12 classifier

Horiba LA-910 Laser Light Scattering Particle Sizer

Marcy 4"x 6" Jaw Crusher Gilson Sonic Sieve

Receipt: Approximately 80 lbs. of material was received 3-19-03 from Federal Express. Confirmation of receipt (EPL Project Identification 1203-001) was returned upon delivery.

Storage: Petroleum coke was stored at room temperature in sealed polyethylene bags when the material was not being processed.

Processing Procedure:

The green petroleum coke showed high moisture content upon inspection. The high moisture content was indicated by condensation on the inside of the received petroleum coke bags. After consulting with Deborah Herron and Jacobs Consultancy, the material was dried according to ASTM D 3302-00 (Standard Test Method for Total Moisture in Coal).

Task 1

All processes were run at room temperature. The dried petroleum coke was then run through a Homoloid JT Hammermill (SN # JT-694) equipped with a 0.0093 screen.

The resulting hammermilled powder was loaded into 5-gallon ball mills loaded with 0.25 inch ceramic (alumina) media. The loading level in the ball mill was 27 lbs. of media with 5.5 lbs. of petroleum coke.

651-730-1729

2045 Wooddale Drive, Woodbury, MN 55125

FAX 651-730-1826

PARTICLE PROCESSING & CUSTOM RESEARCH

The mills were rotated at 36 rpm for 17.25 hours. The resulting powder had a mean particle size of 9.56 microns (Attch 1) when tested with the Horiba LA-910 in water.

The oversized petroleum coke material was removed using a Majac A-12 Classifier. The Majac was run at 1800 RPM and 8.5 cfm. The resulting particle size of the petroleum coke was a 3.3 micron mean (Attch. 2) when tested with the Horiba LA-910 in water. The Horiba LA-910 test method for the petroleum coke samples is outlined in Attch. 3.

The final yield of product was 10.5 kg of powder.

Task 2

All processes were run at room temperature. An 18" Sweco Screener was set-up with a 7 mesh (2.8 mm) top-screen and a 14 mesh (1.4 mm) bottom-screen. Petroleum coke was fed through the screener and 2-mm material was collected from between the top and bottom screen. Oversized petroleum coke was jaw crushed with a Marcy 4"x 6" Jaw Crusher and rescreened. A Gilson Sonic Sieve particle size analysis (Attch. 4) was run on the screened petroleum coke and the results showed 99.4 % of the material between 1.4 mm – 2.8 mm. Final yield was 3.3 kg of 2 mm Petroleum Coke.

Shipping

All samples were shipped UPS Ground. The following is a summary of the sample disposition.

Sample/Amount	<u>Address</u>	Person
200 grams of 2-3 micron particle size sample	ChevronTexaco Energy Research and Technology Corp.	Richard Dutta
	100 Chevron Way	
1	¹ Richmond, CA 94802	
i -	Fel: 510-242-7037	

651-730-1729

2045 Wooddale Drive, Woodbury, MN 55125

FAX 651-730-1826

A		ZĄ,		IC.
ING	CUST	OM R	ESEA	RCH
ta				

	PARTI	CLE PROCESSING & CUSTOM RESEARCH
200 grams of 2 mm particle sample	ChevronTexaco Energy Research and Technology Corp. 100 Chevron Way Richmond, CA 94802 Tel: 510-242-7037	Richard Dutta
10.5 kg of 2-3 micron particle size sample	FPL Archives, Inc. 45610 Terminal Drive Sterling, Virginia 20166 703/435-8780 ext 201	Sam Busey
Remainder (slightly less than 3 kg) of 2 mm particle size sample)	EPL Archives, Inc. 45610 Terminal Drive Sterling, Virginia 20166 703/435-8780 ext 201	Sam Busey
Leftover petroleum coke material, i.e., that material not used in samples	EPI. Archives, Inc. 45610 Terminal Drive Sterling, Virginia 20166 703/435-8780 ext 201	Sam Busey

651-730-1729 2045 Wooddale Drive, Woodbury, MN 55125 FAX 651-730-1826

Attch 1

HORIBA LA-910 PARTICLE SIZE DISTRIBUTION DATA TABLE Standard 04/23/03 Sample Name: Ballmilled 17.25 Hours ID No: 44/04/23-350 File Name: 5369001.DAT Dist. Form: STANDARD R.R. Index: co.mj Laser: 65.128 % Lamp: 61.185 % Dist. Mode: VOLUME U.Sonic ** (min) Agitation: 7 Circulation: 2 Source: American Petroleum Material: Petroleum Coke Test No: 5369001 Lot No: MO5369 Ballmilled 17-25 Hours 100 10 5369001.DAT F% - V 5369001.DATU% - V 6 40 9.19 1000 Diameter (µm) UNDR% 95.4 (55) 96.6 97.5 (56) (57) (58) (59) (60) (61) 0.022 0.0 (29) 2) 3) 4) 5) 6) 7) 0.877 34.255 39.234 44.938 51.471 58.953 67.523 77.340 88.582 101.460 1.005 1.151 1.318 1.510 1.729 1.981 2.269 98.2 0.029 0.0 (31) (32) (33) (34) (35) (36) (37) 0.034 99.2 99.5 99.7 99.9 0.039 0.044 0.051 11.3 14.2 17.2 20.4 23.9 27.7 31.6 (62) (63) (64) (65) (66) (67) (68) 0.058 2.599 2.976 3.409 (10) 0.067 116.210 133.103 100.0 100.0 (11) (12) (13) (38) (39) (40) 0.076 100.0 100.0 100.0 152.453 174.616 0.100 3.905 0.0 35.9 40.6 200.000 229.075 262.376 (69) (70) 5.122 (15) 0.131 0.0 0.0 (42)5.122 5.867 6.720 7.697 8.816 10.097 11.565 13.246 15.172 17.377 100.0 0.0 0.0 0.0 0.0 0.0 (16) (17) (18) (19) (20) (21) (22) (23) (24) (25) 0.150 0.172 0.197 0.226 0.0 (43) (44) (45) (46) (47) (48) (49) (50) (51) (52) 45.6 (71) (72) (73) (74) (75) (76) 262.376 300.518 344.205 394.244 451.556 517.200 592.387 100.0 100.0 100.0 100.0 0.0 0.0 0.0 0.0 0.0 0.259 0.296 0.339 0.389 100.0 100.0 100.0 0.0 4.2 3.5 2.9 2.3 83.3 678.504 777.141 890.116 0.445 0.0 100.0 100.0 19.904 22.797 26.111

8.237 (pm) 9.561 (µm) Span: 10.623 Spec. Area: 15308 (cm2/cm3) Std. Dev.: 10.531 Coef. Var: 110.14%

(53) (54)

(80) (81)

1019.510

100.0

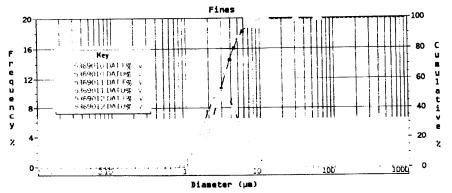
0.0

0.0

0.584

(26) (27)

Attch. 2


HORIBA LA-910

PARTICLE SIZE DISTRIBUTION DATA TABLE Standard 05/15/03

ID No: **/04/30-566 File Name: 5369011.DAT Sample Name: Fines Dist. Form: STANDARD R.R. Index: co.mj

Lamp: 86.338 % Dist. Mode: VOLUME Laser: 85.118 % U.Sonic OFF (min) Circulation: 3 Agitation: 7 Source: American Petroleum Test No: 5369004 Material: Petroleum Coke

Lot No: MO5369

No.	SIZE (µm)	FREQS	UNDRS	No.	SIZE (pm)	FREQS	UNDRS	No.	(شرر) SIZE	FREQS	UNDR
(1)	0.020	0.0	0.0	(28)	0.766	0.2	0.2	(55)	29.907	0.0	100.0
(2)	0.022	0.0	0.0	(29)	0.877	0.5	0.7	(56)	34.255	0.0	100.0
(3)	0.026	0.0	0.0	(30)	1.005	1.0	1.7	(57)	39.234	0.0	100.0
(4)	0.029	0.0	0.0	(31)	1.151	1.7	3.5	(58)	44.93B	0.0	100.0
(5)	0.034	0.0	0.0	(32)	1.318	2.8	6.3	(59)	51.471	0.0	100.0
(6)	0.039	0.0	0.0	(33)	1.510	4.3	10.6	(60)	58.953	0.0	100.0
(7)	0.044	0.0	0.0	(34)	1.729	5.9	16.5	(61)	67.523	0.0	100.0
(8)	0.051	0.0	0.0	(35)	1.981	7.6	24.1	(62)	77.340	0.0	100.0
(9)	0.058	0.0	0.0	(36)	2.269	9.0	33.0	(63)	88.582	0.0	100.0
(10)	0.067	0.0	0.0	(37)	2.599	10.1	43.1	(64)	101.460	0.0	100.0
(11)	0.076	0.0	0.0	(38)	2.976	10.6	53.7	(65)	116.210	0.0	100.0
(12)	0.087	0.0	0.0	(39)	3.409	10.2	63.8	(66)	133.103	0.0	100.D
(13)	0.100	0.0	0.0	(40)	3.905	9.0	72.9	(67)	152.453	0.0	100.0
(14)	0.115	0.0	0.0	(41)	4.472	7.6	80.4	(68)	174.616	0.0	100.0
(15)	0.131	0.0	0.0	(42)	5.122	6.0	86.5	(69)	200.000	0.0	100.0
(16)	0.150	0.0	0.0	(43)	5.867	4.6	91.1	(70)	229.075	0.0	100.0
(17)	0.172	0.0	0.0	(44)	6.720	3.4	94.5	(71)	262.376	0.0	100.0
(18)	0.197	0.0	0.0	(45)	7.697	2.3	96.8	(72)	300.518	0.0	100.0
(19)	0.226	0.0	0.0	(46)	8.816	1.5	98.3	(73)	344,205	0.0	100.0
(20)	0.259	0.0	0.0	(47)	10.097	0.9	99.1	(74)	394.244	0.0	100.0
(21)	0.296	0.0	0.0	(48)	11.565	0.5	99.6	(75)	451.556	0.0	100.0
(22)	0.339	0.0	0.0	(49)	13.246	0.2	99.9	(76)	517.200	0.0	100.0
(23)	0.389	0.0	0.0	(50)	15.172	0.1	100.0	(77)	592.387	0.0	100.0
(24)	0.445	0.0	0.0	(51)	17.377	0.0	100.0	(78)	678.504	0.0	100.0
(25)		0.0	0.0	(52)	19.904	0.0	100.0	(79)		0.0	100.0
(26)		0.0	0.0	(53)		0.0	100.0	(80)	890.116	0.0	100.0
(27)	0.669	0.0	0.0	(54)	26.111	0.0	100.0	(81)	1019.510	0.0	100.0

- 95 -

Attch. 3

TEST METHOD FOR API PETROLEUM COKE

Sample Preparation

May 15, 2003

Mix 0.15-0.2 grams of petroleum coke with 5-6 grams distilled water. Add TX-100 surfactant to aid dispersion. Mix thoroughly until no large concentrations of sample are

LA-910 Preparation

Fill the test chamber to capacity with 140 ml distilled water. Add 3-4 drops of TX-100 surfactant from a 10% concentrate source, resulting in approximately a .1% diluted total. Select the relative refractive index appropriate for this material (1.61-3.02i). Circulate the solvent using a pump speed of 2-3, subtract the background. Add the sample drop by drop until the laser transmission falls into the acceptable range (70 – 95)% transmittance. Activate the sonicator to aid dispersion, cease sonication when sample is completely dispersed.

Sample Test

Measure the sample three times. Save each measurement. Overlay the three measurements on a graph. If they appear stable, the test is complete. If not, investigate. A steady increase in the laser transmission rate indicates more particles are present from pass to pass. That indicates the sample was not completely dispersed yet. A steady decrease in the laser transmission rate indicates the sample is agglomerating, settling, or dissolving.

Report

Using the Display module, graph the three test runs over one another. A stable test will appear as one line, an unstable condition will clearly show all three runs, indicating instability. If stable, select a run (typically the middle run) and print the complete data table along with the graph.

Author:

Aveka, Inc. (651) 714-4293 ext 208

Attch.	
	- Pr - COCA-CO
	9

Sample ID: Americar 2mm Pet. Coke	Sample ID: American Petroleum Institute 2mm Pet Coke		Sieve Analysis			5/29/03
US Standard	Mesh Opening	Sieve Weight	Sieve Weight	Weignt of	े Sample	Control of the Contro
Mesh Size	(Microns)	(Grams)	+ Sample (g)	Sample (g)	Above Sieve	under Sieve
7	2800	50.951	50 975	0 024	0.31	୫୨ ବର
80	2360	50 741	52 146	1 405	18.18	81.51
0,	2000	48 772	51 024	2.252	29.14	52.37
12	1700	47.324	50.173	2.849	36.86	15.51
41	1400	48.450	49 624	1 174	15.19	0.32
catch	0	220.018	220.043	0 025	0.32	0.90
			Totals:	7.729	100:00	

otes/Comme

- 97 -

Appendix 5

Laboratory Characterization of 2 mm Particle Size Petroleum Coke

Andly 515 REPOIL

ANALYTICAL RESULTS

Prepared for:

Chevron Products Company 940 Heneley St. Bldg. 210

> Richmond CA 94801 510-242-8191

> > Propared by:

Lancaster Laboratories 2425 New Holland Pike Lancaster, PA 17605-2425

SAMPLE GROUP

The sample group for this submittal is 857532. Samples arrived at the laboratory on Friday, June 27, 2003. The PO# for this group is 99011184 and the release number is

Client Description
Pet Coke 2mm Solid Sample Pet Coke Micronized Solid Sample Lancaster Labs Number 4073301

4073302

1 COPY TO Lancaster Laboratories I COPY TO Chevron CRTC

Questions? Contact your Client Services Representative Alison M O'Comor at (717) 656-2300.

Respectfully Submitted,

Lancaster Laboratories, Inc. 2425 New Holland Pike PO Box 12425

- 99 -

MON, 10, COUNTY TURN

Analysis Report

Page 1 of 1

Lancaster Laboratories Sample No. SW 4073301

Collected:06/26/2003 00:00

Submitted: 06/27/2003 10:40 Reported: 07/09/2003 at 11:42

Discard: 08/09/2003
Pet Coke 2mm Solid Sample
Cost Center# ENG-4066
HPV Petroleum Cake

Account Number: 10863

Chevron Products Company 940 Hensley St. Bldg. 210

Richmond CA 94801

2MMPC

CAT No.	Analysis Mame	CAS Mumber	As Rece Recult	ived	Method Detection Limit	Units	Dilution Factor
07804	PAHs in Soil by GC/NS						
01191	Acenaphthene	83-32-9	N.D.		330.	ug/kg	10
01195	Pyrene	129-00-0	1,300.	J	330.	ug/kg	10
02751	1-Mathylnaphthalene	90-12-0	2,700.	đ	330.	ug/kg	10
03761	Waphthalene	91-20-3	3,600.		330.	ug/kg	10
03763	Acenaphthylene	208-96-8	N.D.		330.	ng/kg	10
03768	Fluorene	86-73-7	340.	J	330.	ug/kg	10
03775	Phenanthrene	85-01-8	690.	J	330.	ug/kg	10
03776	Anthracene	120-12-7	N.D.		330.	ug/kg	10
03778	Fluoranthono	205-44-0	N.D.		330.	ug/kg	10
03781	Benzo (a) anthracene	56-55-3	580.	J	330 <i>.</i>	ug/kg	10
03782	Chrysene	218-01-9	880.	J	330.	ug/kg	10
03786	Bonzo (b) fluoranthene	205-99-2	520.	J	330.	ug/kg	10
03787	Benzo(k) fluoranthene	207-08-9	N.D.		330.	ug/kg	10
03788	Benzo (a) pyrone	50-32-8	1,800.	ð	330.	ug/kg	10
03789	Indeno (1, 2, 3-cd) pyrene	193-39-5	340.	J	330.	ug/kg	10
03790	Dibenz (a, h) anthracene	53-70-3	490.	J	330.	ug/kg	10
03791	Bonzo(g,h,i)perylene	191-24-2	1,100.	J	330.	ug/kg	10
04694	2-Methylnaphthalene	91-57-6	11,000.		330.	ug/kg	10

Due to the sample matrix an initial dilution was necessary to perform the analysis. Therefore, the reporting limits for the GC/MB semivolatile compounds were raised.

State of California Lab Certification No. 2116

Laboratory Chronicle

		Deporatory	CILLU	117676		
CAT		_		Analysis		Dilution
Wo.	Analysis Mame	Mathod	TrialO	Date and Time	Analyst	Factor
07804	PARs in Soil by GC/M8	SW-846 8270C	1	07/02/2003 15:41	Susan L Schouering	10
07806	DMA Soil Extraction	SW-846 3550B	1	06/30/2003 20:00	Sally L Appleyard	1

- 100 -

Page 1 of 2

Quality Control Summary

Client Name: Chevron Products Company Reported: 07/09/03 at 11:42 AM

Group Number: 857532

Laboratory Compliance Quality Control

Analysis Name	Blank Result	Blank MDL	Report Units	LCS VILLC	LCSD AREC	ics/icsd <u>Limits</u>	RPD	RPO Max
Batch number: 03181SLA026	Sample n	umber(s):	4073301-40	73302				
Acenaphthene	N.D.	33.	ug/kg	91		76-109		
Pyzene	N.D.	33.	ug/kg	89		71-110		
1-Methylnaphthalenc	N.D.	33.	ug/kg	87		76-101		
Maphthalene	N.D.	33.	ug/kg	87		73-103		
Acenaphthylone	N.D.	33.	ug/kg	94		73-106		
Pluorene	N.D.	33.	ug/kg	93		66-115		
Phenanthrene	N.D.	33.	ug/kg	88		70-107		
Anthracene	N.D.	33.	ug/kg	86		71-107		
Fluoranthene	M.D.	33.	ug/kg	90		69-107		
Benzo (a) anthracene	N.D.	33.	ug/kg	93		74-107		
Chrysone	N.D.	33.	ug/kg	89		72-109		
Benzo(b) fluoranthene	N.D.	33.	ug/kg	95		71-113		
Benzo (k) fluoranthene	N.D.	33.	ug/kg	97		75-112		
Benzo (a) pyrene	W.D.	33.	ug/kg	94		79-111		
Indeno(1,2,3-cd)pyrene	N.D.	33.	ug/kg	88		74-113		
Dibenz (a, h) anthracene	w.b.	33.	ug/kg	95		81-118		
Senzo(g,h,i)perylene	N.D.	33.	ug/kg	92		74-114		
2-Methylnaphthalene	M.D.	33.	ug/kg	90		70-102		

Sample Matrix Quality Control

	308	MED	M8/M8D		RPD	MAG	DOP	DUP	Dup RPD
Amelysis Fame	MIC	AREC	Limite	RIPO	XVX	Conc	Cond	RED	Max
Batch number: 031818LA025	Sample	number	(s): 407330	1-40733	02				
Acenaphthene	107	93	48-132	14	30				
Pyrene	82	68	28-144	12	30				
1-Methylnaphthalene	75	67*	72-100	5	30				
Naphthalene	77	61	38-132	9	30				
Acenaphthylene	108	91	46-128	18	30				
Fluorene	88	75	39-137	14	30				
Phonanthrene	88	74	29-143	13	30				
Anthracene	101	85	35-138	17	30				
Fluoranthene	81	72	19-145	11	30				
Benzo(a) anthracene	89	75	26-144	14	30				
Chrysene	101	90	23-150	و و	30				
Benzo (b) fluoranthene	90	74	32-140	16	30				
Benzo (k) fluozanthene	103	68	36-143	16	30				
Benzo(a) pyrene	90	72	23-154	13	30				
Indeno(1,2,3-cd)pyrene	92	78	13-155	15	30				
Dibens (a, h) anthracene	110	86	19-163	19	30				
Benzo(g,h,i)perylene	99	83	17-152	13	30				
2-Methylnaphthalene	38	19*	32-133	6	30				

- *- Outside of specification
 (1) The result for one or both determinations was less than five times the LOQ.
- (2) The background result was more than four times the spike added.

- 101 -

Page 2 of 2

Quality Control Summary

Client Name: Chevron Products Company Reported: 07/09/03 at 11:42 AM

Group Number: 857532

Sample Matrix Quality Control

DUZ DUP <u>laslysis Name</u> RPD

Surrogate Quality Control

Analysis Name: PAHs in Soil by GC/MS Batch number: 031618LA026

Batton numu	er: 031618LA026 Fitrobensene-d5	2-Pluorobiphenyl	Terphenyl-dl4	
4073301	101	108	92	
4073302	101	99	84	
Blank	87	85	83	
LCS	94	92	93	
MS	105	107	88	
MSD	90	90	78	
Limits:	47-129	55-123	39-128	

*- Outside of specification

⁽²⁾ The background result was more than four times the spike added.

⁽¹⁾ The result for one or both determinations was less than five times the LOQ.

- 102 -

AUG. 10. COUJ IU. TUAM VALV IHAN From: Sent: To: Co: Found your results. Subject: micronized YCJ58009 REGULAR SERVICE 3030999 PETROLEUM COKE 2NM REPORTED 06/13/2003 Marked-up: 06/12/2003 by Prj Id: GLOBETECH (474/0)Test code Test Name/Element/Result Test Status Analyst Status date Test Cost 06/13/2003 \$200.00 30258 MICROWAVE DIGST/ICP PLUS REPORTED <29.61 PPM AL 300.200 PPM AS <29.61 PPM <29.61 PPM BE <14.805 PPM BI <29.61 PPM BA CO <14.805 PPM CD <14.805 PPM CA 121.600 PPM CU <17.766 PPM FE 247.000 PPM CR <14.805 PPM MG 60.850 PPM K <44.414 PPM LI <14.805 PPM NA 114.600 PPM MN <29.61 PPM MO <29.61 PPM PB <29.61 PPM NI 351.700 PPM 30.300 PPM SE <29.61 PPM SB <74.024 PPM S 58060.000 PPM SN <44.414 PPM TI <14.805 PPM SI 554.600 PPM ZN <14.805 PPM 1805.000 PPM 2mm YCJ58009 REGULAR SERVICE 3030251 PETROLEUM COKE REPORTED 06/09/2003 Marked-up: 06/09/2003 by Prj Id: (474/0) Test code Test Name/Element/Result Test Status Analyst Status date Test Cost 06/09/2003 \$200.00 30258 MICROWAVE DIGST/ICP PLUS REPORTED AL 321,000 PPM AS <19.279 PPM <19.279 PPM BI <19.279 PPM <19.279 PPM BE <9.639 PPM BA CO <9.639 PPM CA 178.000 PPM CD <0.639 PPM FE 310.000 PPM CU <11.567 PPM CR <9.639 PPM K <28.918 PPM LI <9.639 PPM MG 77.370 PPM NA 133.000 PPM MN <19.279 PPM MO <19.279 PPM PB <19.279 PPM NI 367.100 PPM <19.279 PPM <48.197 PPM SE <19.279 PPM S 73920 PPM SB TI 12.910 PPM 743.200 PPM SN <28.918 PPM SI 1938.000 PPM ZN 12.010 PPM --Original Message-From:

1

- 103 -

Appendix 6

Specific Conductance, Hardness, Alkalinity and pH of Well Water Measured During the 4-Week Period Immediately Preceding the Test

Mean		Range
Specific Conductance (µ mhos/cm)	293 (N = 4)	275 – 305
Hardness (mg/L as CaC0 ₃)	$ \begin{array}{c} 131 \\ (N=4) \end{array} $	128 – 136
Alkalinity (mg/L as CaC0 ₃)	$ \begin{array}{c} 179 \\ (N=4) \end{array} $	174 – 182
pH 8.3	(N=4)	8.2 - 8.4

- 104 -

Appendix 7

Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water¹

	Measured Concentration			
Component	(µg/L) Comp	ponent	(µg/L)	
Aldrin	< 0.0099	Heptachlor Epoxide	< 0.0099	
Alpha BHC	< 0.0099	Malathion	< 2.0	
Beta BHC	< 0.040	Merphos	< 2.0	
Bolstar	< 2.0	Methoxychlor	< 0.099	
Chlordane	< 0.50	Methyl Parathion	< 2.0	
Coumaphos	< 3.0	Mevinphos	< 2.0	
Delta BHC	< 0.0099	Mirex	< 0.050	
Demeton-O	< 2.0	Naled	< 3.0	
Demeton-S	< 2.0	o,p-DDD	< 0.020	
Diazinon	< 2.0	o,p-DDE	< 0.020	
Dichlorvos	< 2.0	o,p-DDT	< 0.020	
Dieldrin	< 0.020	p,p-DDD	< 0.020	
Disulfoton	< 2.0	p,p-DDE	< 0.020	
Dursban (Chlorpyrifos)	< 2.0	p,p-DDT	< 0.025	
Endosulfan I	< 0.0099	PCB-1016	< 0.50	
Endosulfan II	< 0.042	PCB-1221	< 1.2	
Endosulfan Sulfate	< 0.020	PCB-1232	< 0.89	
Endrin	< 0.020	PCB-1242	< 0.50	
EPN	< 4.0	PCB-1248	< 0.50	
Ethion	< 2.0	PCB-1254	< 0.50	
Ethoprop	< 2.0	PCB-1260	< 0.50	
Ethyl Parathion	< 2.0	Phorate	< 2.0	
Famphur	< 2.0	Ronnel	< 2.0	
Fensulfothion	< 4.0	Stirophos	< 2.0	
Fenthion	< 2.0	Telodrin	< 0.0099	
Gamma BHC – Lindane	< 0.0099	Tokuthion	< 2.0	
Guthion (Azinphos-methyl)	< 4.0	Toxaphene	< 0.99	
НСВ	< 0.099	Trichloronate	< 2.0	
Heptachlor	< 0.0099	Trithion	< 2.0	

¹Analyses performed by Lancaster Laboratories on samples collected on December 22, 2004.

- 105 -

Appendix 7 (Continued)

Analyses of Pesticides, Organics and Metals in Wildlife International, Ltd. Well Water¹

	Measured Concentration		
Component	(mg/L) Comp	(mg/L)	
Aluminum <	0.200	Magnesium	12.7
Antimony	< 0.0200	Manganese	< 0.0050
Arsenic	< 0.0100	Mercury	< 0.00020
Barium	< 0.0050	Nickel	< 0.0100
Beryllium	< 0.0050	Nitrate Nitrogen	< 0.50
Bromide	< 2.5	Nitrite Nitrogen	< 0.50
Cadmium <	0.0050	Potassium	6.64
Calcium 31.1		Selenium	< 0.0100
Chloride 6.9		Silver	< 0.0050
Chromium <	0.0050	Sodium	19.7
Cobalt <	0.0050	Sulfate	5.5
Copper	< 0.0100	Thallium	< 0.0200
Fluoride	< 0.50	Vanadium	< 0.0050
Iron	< 0.200	Zinc	< 0.0200
Lead <	0.0200		

¹Analyses performed by Lancaster <u>Laboratories on samples collected on December 22, 2004.</u>

- 106 -

Appendix 8

Results of WAF Equilibration Trial

Polyaromatic Hydrocarbon Analysis

Water accommodated fractions (WAFs) were analyzed for the presence of the 19 polyaromatic hydrocarbons (PAHs) after mixing for 24, 48, 72 and 96 hours. No PAHs were detected in any WAF samples. Results of PAH analyses in WAFs are presented in Wildlife International, Ltd. Project Number 472C-104.

Metals Analysis

Water accommodated fractions (WAFs) were analyzed for the presence of the six m etals and sulfur after mixing for 24, 48, 72 and 96 hours. Except for a trace of iron contam ination in one test vessel, no metals were detected in any WAF samples. Sulfur was not detected above the background level in the freshwater used. Results of the m etals analyses in WAFs are presented in Wildlife International, Ltd. Project Number 472C-105.

- 107 -

Appendix 9

The Analysis of Organic Constituents in Petroleum Coke in Freshwater

- 108 -

Appendix 9.1

Analytical Method Flowchart for the Analysis of PAH Components of Petroleum Coke in Freshwater by HPLC

FLOWCHART FOR THE ANALYSIS OF WATER SOLUBLE COMPONENTS OF PETROLEUM COKE IN FRESHWATER

Prepare samples in freshwater using volumetric flasks, volumetric pipettes, gas tight syringes and culture tubes. Freshwater served as the matrix blanks.

Dilute samples, as necessary, with freshwater such that the final sample concentrations fall within the calibration standard range.

Transfer samples and standards to autosampler vials for analysis by either HPLC/UV or fluorescence detection.

- 109 -

Appendix 9.2

Typical HPLC Operational Parameters

INSTRUMENT: Agilent Model 1100 High Performance Liquid Chromatograph

(HPLC) with a either an Agilent Series 1100 Variable Wavelength

Detector or a Jasco Model FP-1520 Fluorescence Detector

ANALYTICAL COLUMN: YMC-Pack ODS AM (150 mm x 4.6 mm, 3 µm particle size)

STOP TIME: 35 minutes

FLOW RATE: 1.00 mL/minute

OVEN TEMPERATURE: 40°C

MOBILE PHASE: SOLVENT A: 0.1% H₃PO₄

SOLVENT B: CH₃CN

GRADIENT: Time Flow

(<u>min)</u>	<u>%A</u>	<u>%B</u> (m	<u> L/min)</u>
0.01	40.0	60.0	1.000
1.00	40.0	60.0	1.000
30.00	0.0	100.0	1.000
30.10	40.0	60.0	1.000
35.00	40.0	60.0	1.000

INJECTION VOLUME: 100 μL

APPROXIMATE Naphthalene = 6.8 min. Chrysene = 16.2 min.

RETENTION TIMES: Acenaphthylene = 7.8 min. Benz(a)anthracene = 16.4 min.

1-Methylnaphthalene = 8.9 min. 2-Methylnaphthalene = 9.2 min. Benzo(k)fluoranthene = 19.5 min. Benzo(k)fluoranthene = 19.5 min.

Fluorene = 9.8 min. Benzo(a)pyrene = 20.2 min.

Acenaphthene = 9.9 min.

Phenanthrene = 10.7 min.

Anthracene = 11.4 min.

Fluoranthene = 13.0 min.

Dibenz(a,h,)anthracene = 21.8 min.

Indeno(1,2,3-cd)pyrene = 23.1 min.

Benzo(g,h,i)perylene = 23.4 min.

Dibenzo(a,e)pyrene = 25.2 min.

Pyrene = 13.8 min.

PRIMARY ANALYTICAL

WAVELENGTHS UV = 220 nm; Fluorescence = 340 nm to 425 nm

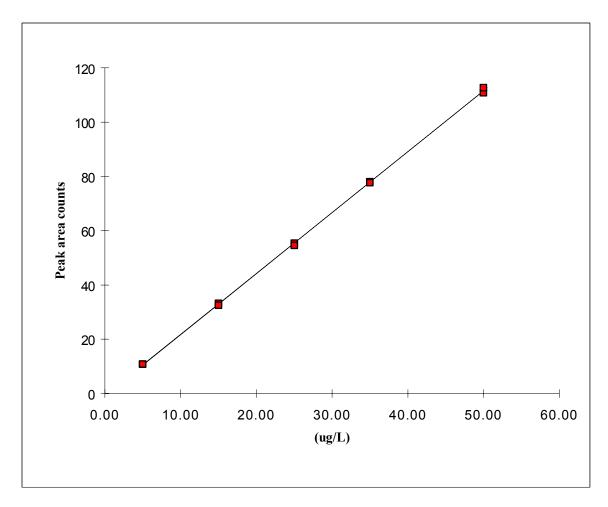
- 110 -

Appendix 9.3

Analytical Stocks and Standards Preparation

For all compounds received from AccuStandard, with the exception of Benzo(g,h,i)pery lene, Benzo(k)fluoranthene and Fluoranthene, the mass received was quantitatively transferred to a 100-mL class A volum etric flask using m ethanol. These prim ary stock solution concentrations were 0.100 mg/mL. Benzo(g,h,i)perylene, Benzo(k)fluoranthene and Fluoranthene were quantitatively transferred to a 200-mL class A volumetric flask using methanol. These primary stock solution concentrations were 0.05 mg/mL.

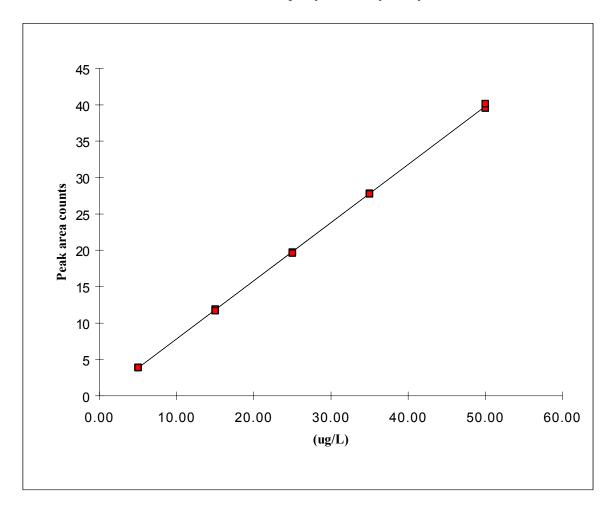
A stock of Dibenzo(a.e)py rene (received from Cambridge Isotope Labs) was prepared by weighing 0.01000 g on an analytical balance, transferred to a 100-m L class A volum etric flask and brought to volume using tetrahydrofuran. This primary stock solution concentration was 0.100mg/mL.


Stocks of 2-m ethylnaphthalene and 1-m ethynaphthalene (received from Chem Service) were prepared by weighing 0.1004 g and 0.1003 g, respectively, on an analytical balance. The test materials were transferred to 100-m L class A volum etric flasks and brought to volume using methanol. These primary stock solutions contained 1.00 mg/mL of the test material and were diluted in m ethanol to prepare 0.100 mg/mL stock solutions.

Aliquots (1.00 mL) of the 0.100 mg/mL primary stocks and 2.00 m L of the 0.05 m g/L, were added to a 100-mL class A volumetric flask and brought to volume with methanol. The following shows the dilution scheme for the set of calibration standards:

Stock		Final	Standard
Concentration	Aliquot	Volume	Concentration
mg/L	<u>(μL)</u>	<u>(mL)</u>	<u>(µg/L)</u>
1.00	50.0	10.0	5.00
1.00	150	10.0	15.0
1.00	250	10.0	25.0
1.00	350	10.0	35.0
1.00	500	10.0	50.0

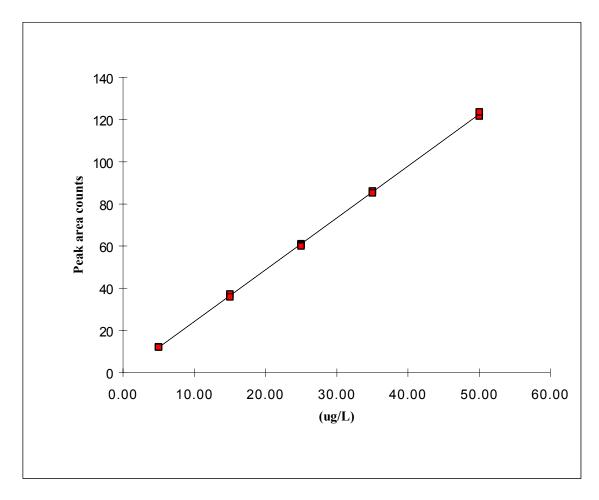
- 111 -


Appendix 9.4Calibration Curve for Naphthalene Analyzed by HPLC/UV

Slope = 2.2446; Y-intercept = -0.7323; $R^2 = 0.9997$

- 112 -

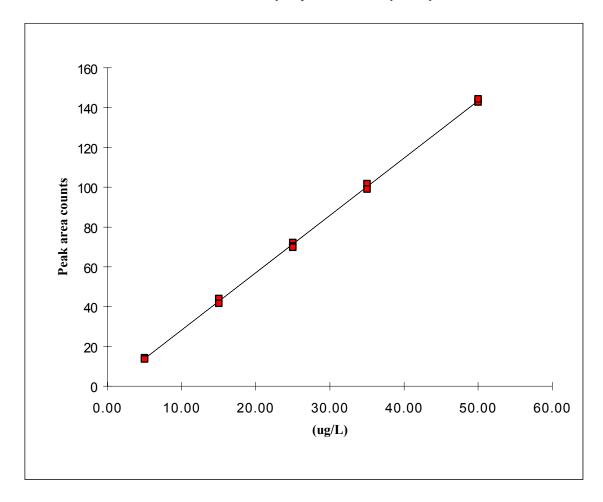
Appendix 9.5Calibration curve for Acenaphthylene Analyzed by HPLC/UV



Slope = 0.7992; Y-intercept = -0.1873; $R^2 = 0.9998$

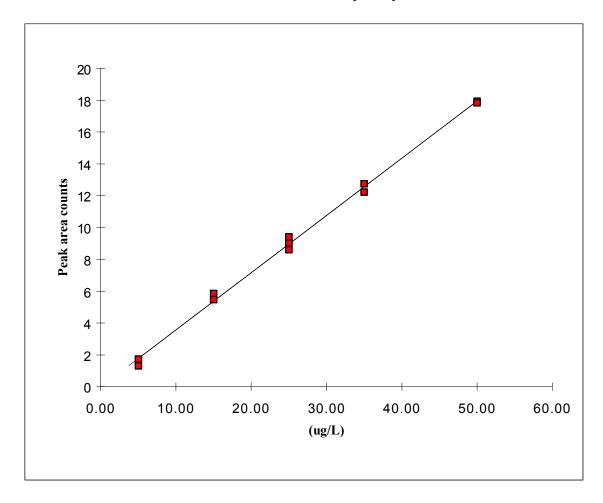
- 113 -

Appendix 9.6


Calibration curve for 1-Methylnaphthalene Analyzed by HPLC/UV

Slope = 2.4555; Y-intercept = -0.3129; $R^2 = 0.9997$

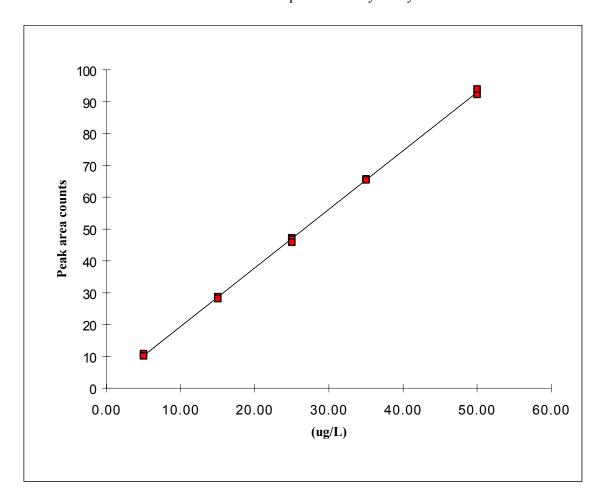
- 114 -


Appendix 9.7Calibration curve for 2-Methylnaphthalene Analyzed by HPLC/UV

Slope = 2.8814; Y-intercept = -0.6393; $R^2 = 0.9994$

- 115 -

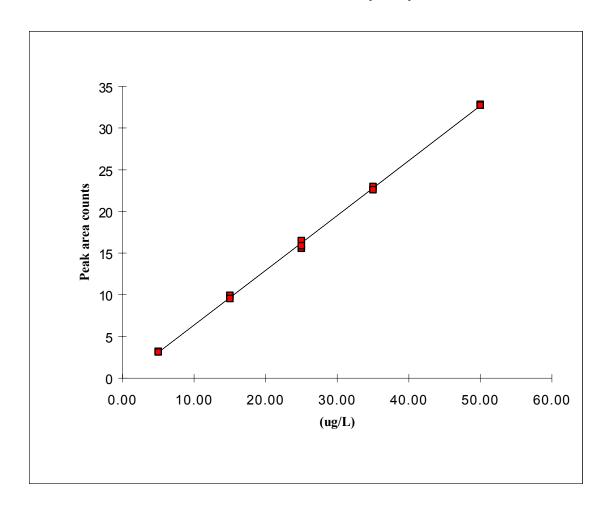
Appendix 9.8Calibration curve for Fluorene Analyzed by HPLC/UV



Slope = 0.3593; Y-intercept = -0.0275; $R^2 = 0.9970$

- 116 -

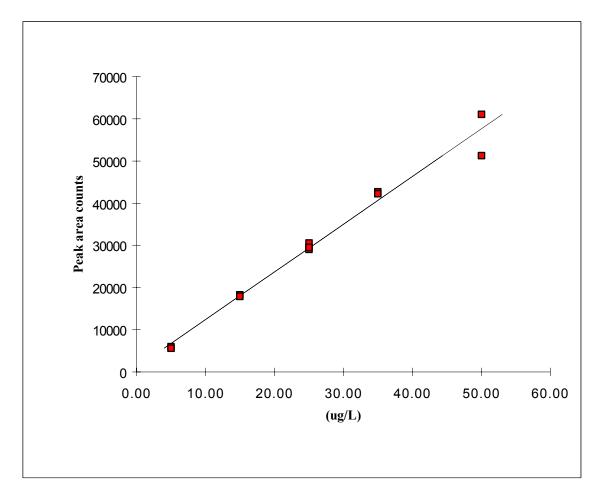
Appendix 9.9


Calibration curve for Acenaphthene Analyzed by HPLC/UV

Slope = 1.8410; Y-intercept = 0.9418; $R^2 = 0.9996$

- 117 -

Appendix 9.10Calibration curve for Phenanthrene Analyzed by HPLC/UV

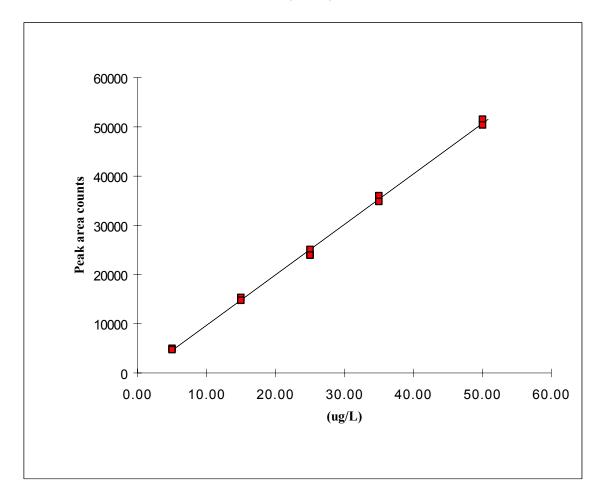


Slope = 0.6580; Y-intercept = -0.2261; $R^2 = 0.9992$

- 118 -

Appendix 9.11

Calibration curve for Anthracene Analyzed by HPLC with Fluorescence Detection

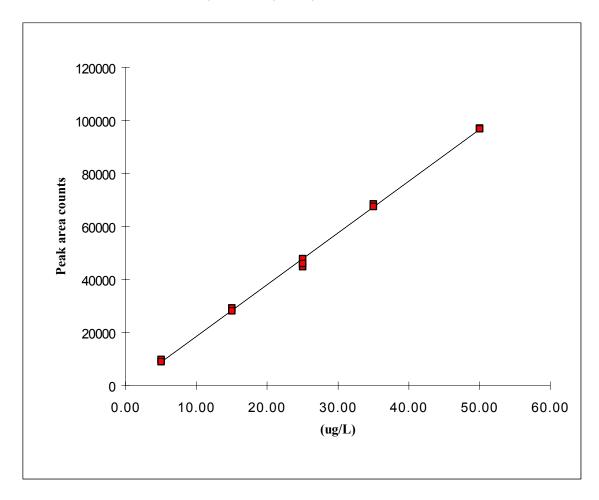


Slope = 1130.2676; Y-intercept = 1098.2202; $R^2 = 0.9803$

- 119 -

Appendix 9.12

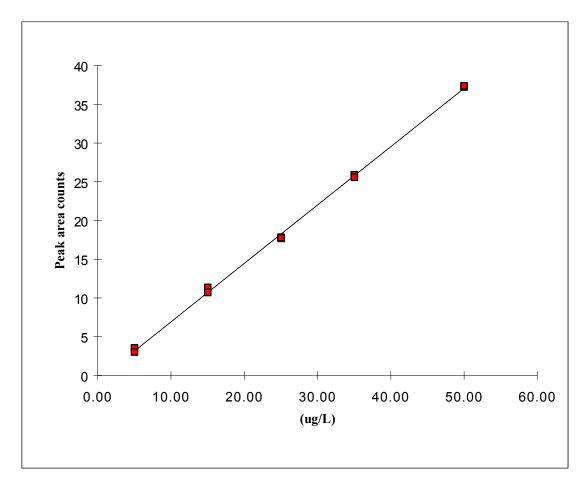
Calibration curve for Fluoranthene analyzed by HPLC with Fluorescence Detection



Slope = 1024.8555; Y-intercept = -587.0169; $R^2 = 0.9983$

- 120 -

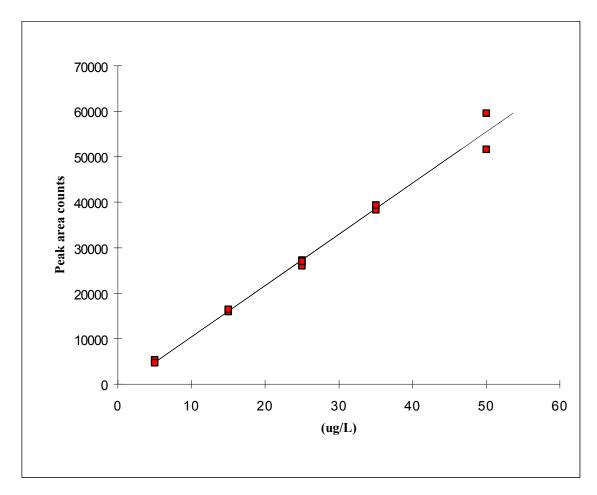
Appendix 9.13


Calibration curve for Pyrene Analyzed by HPLC with Fluorescence Detection

Slope = 1948.9153; Y-intercept = -917.5613; $R^2 = 0.9983$

- 121 -

Appendix 9.14Calibration curve for Chrysene Analyzed by HPLC/UV

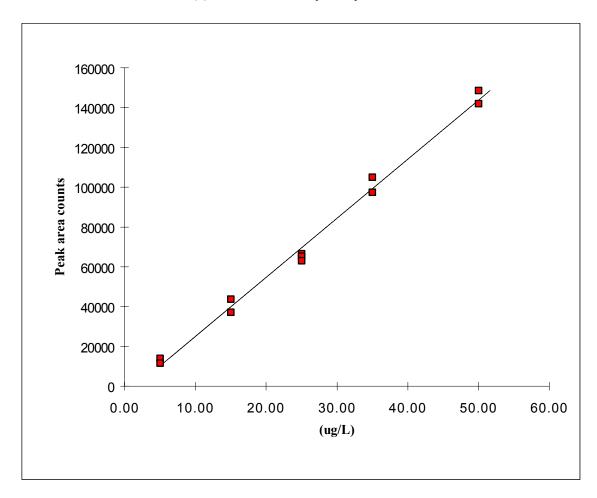


Slope = 0.7537; Y-intercept = -0.6076; $R^2 = 0.9989$

- 122 -

Appendix 9.15

Calibration curve for Benz(a)anthracene Analyzed by HPLC with Fluorescence Detection

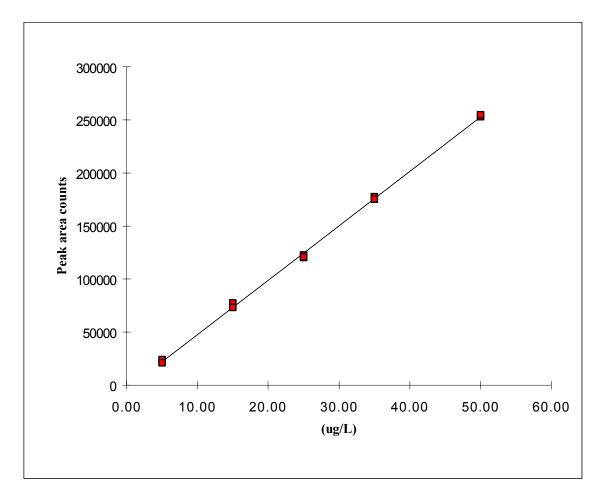


Slope = 1126.4458; Y-intercept = -840.1001; $R^2 = 0.9890$

- 123 -

Appendix 9.16

Calibration curve for Benzo(b)fluoranthene Analyzed by HPLC with Fluorescence Detection

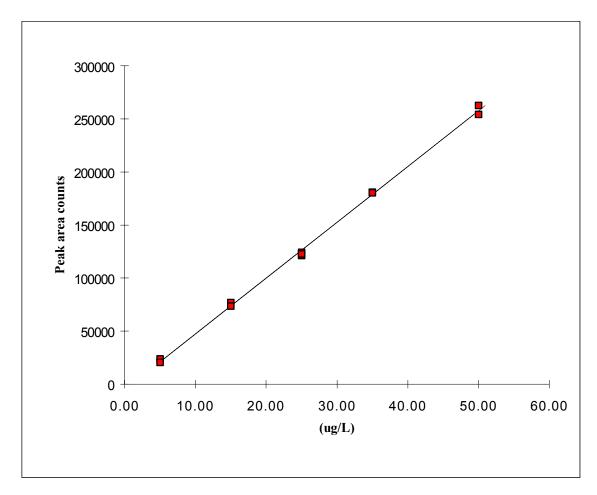


Slope = 2969.5100; Y-intercept = -4747.0950; $R^2 = 0.9921$

- 124 -

Appendix 9.17

Calibration curve for Benzo(k)fluoroanthene Analyzed by HPLC with Fluorescence Detection

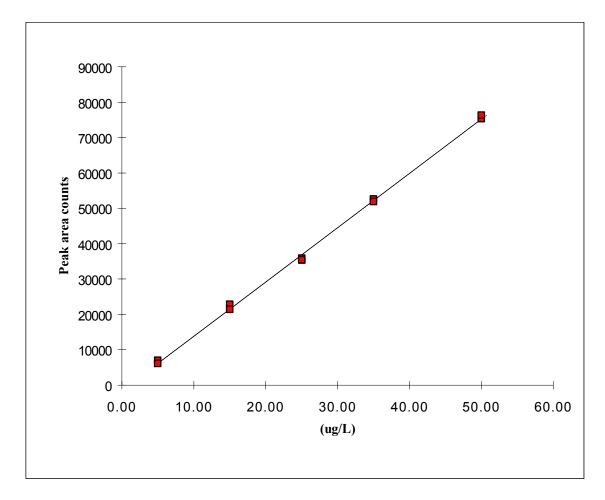


Slope = 5128.7396; Y-intercept = -3759.1793; $R^2 = 0.9990$

- 125 -

Appendix 9.18

Calibration curve for Benzo(a)pyrene Analyzed by HPLC with Fluorescence Detection

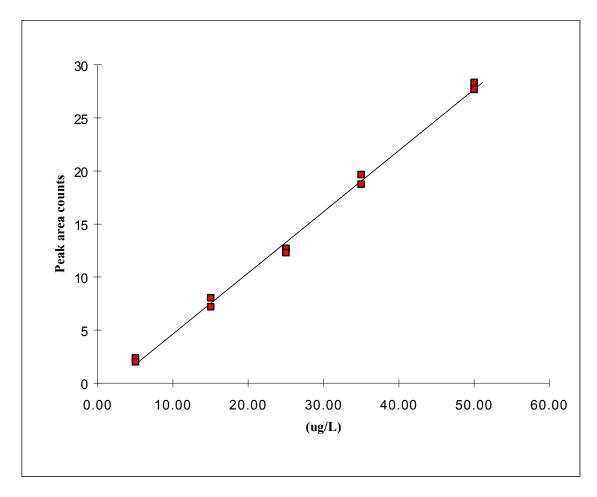


Slope = 5256.4678; Y-intercept = -5235.0017; $R^2 = 0.9985$

- 126 -

Appendix 9.19

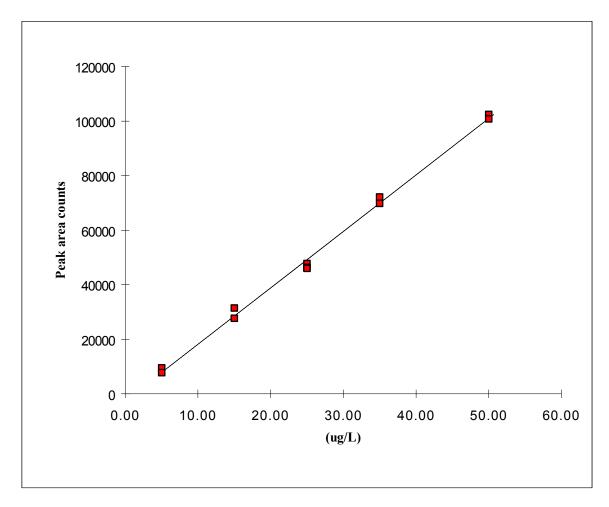
Calibration curve for Dibenz(a,h)anthracene Analyzed by HPLC with Fluorescence Detection



Slope = 1535.4327; Y-intercept = -1559.1883; $R^2 = 0.9984$

- 127 -

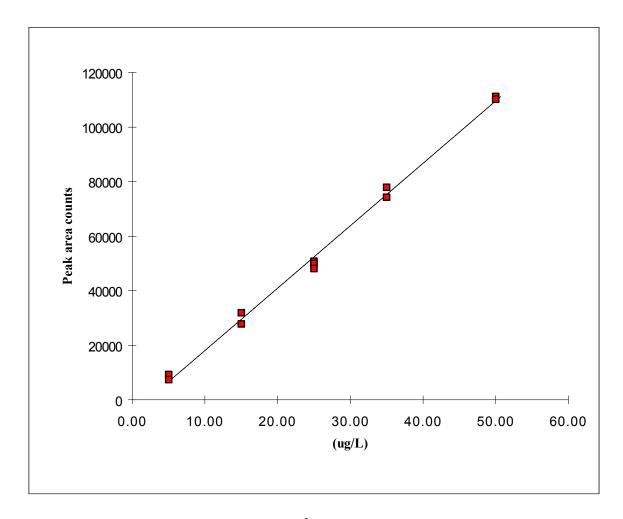
Appendix 9.20


Calibration curve for Indeno(1,2,3-cd)pyrene Analyzed by HPLC/UV

Slope = 0.5758; Y-intercept = -1.1244; $R^2 = 0.9959$

- 128 -

 $\label{eq:Appendix 9.21} \textbf{Calibration curve for Benzo}(g,h,i) perylene Analyzed by HPLC with Fluorescence Detection$

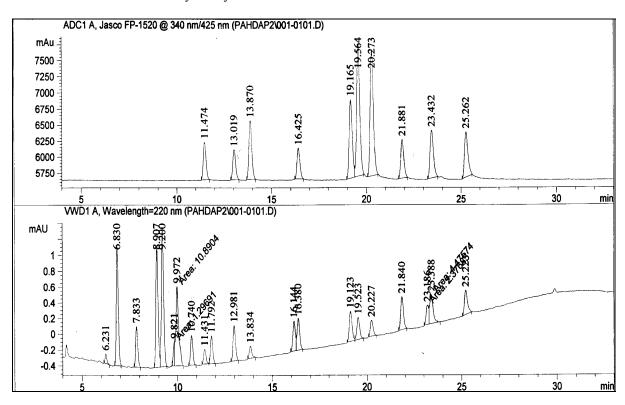


Slope = 2069.2825; Y-intercept = -2582.9564; $R^2 = 0.9963$

- 129 -

Appendix 9.22

Calibration curve for Dibenzo(a,e)pyrene Analyzed by HPLC with Fluorescence Detection

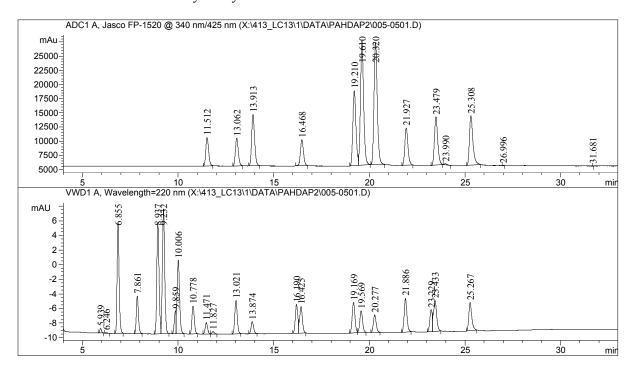


Slope = 2286.8927; Y-intercept = -4842.1080; $R^2 = 0.9958$

- 130 -

Appendix 9.23

Representative Chromatograms of a Low-level Calibration Standard Analyzed by HPLC/UV and Fluorescence Detection.

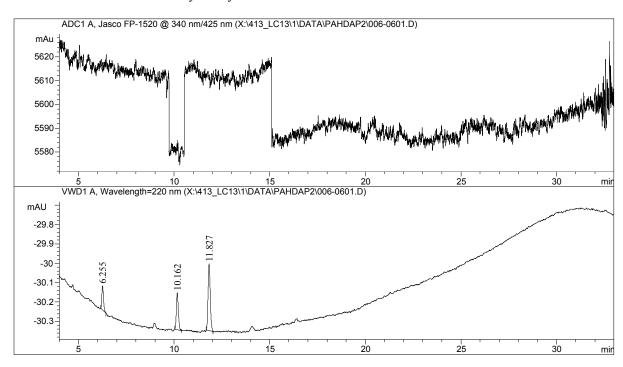


Nominal Concentration: 5.00 µg/L

- 131 -

Appendix 9.24

Representative Chromatograms of a High-level Calibration Standards Analyzed by HPLC/UV and Fluorescence Detection

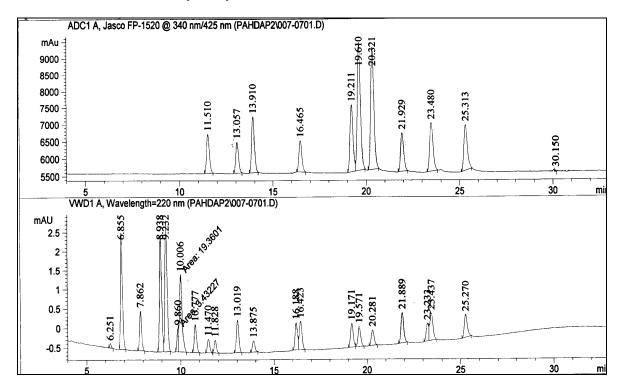


Nominal Concentration: 50.0 µg/L

- 132 -

Appendix 9.25

Representative Chromatograms of a Matrix Blank Sample Analyzed by HPLC/UV and Fluorescence Detection

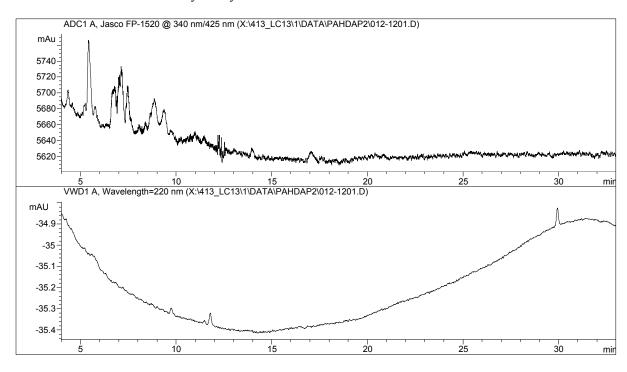


Sample Number 472A-112-MAB-1.

- 133 -

Appendix 9.26

Representative Chromatograms of a Matrix Fortification Sample Analyzed by HPLC/UV and Fluorescence Detection



Sample Number 472A-112-MAS-1. Nominal Concentration: 10.0 µg/L

- 134 -

Appendix 9.27

Representative Chromatograms of a Test Sample Analyzed by HPLC/UV and Fluorescence Detection

Sample Number 472A-112-2. Nominal Concentration: 1000 mg/L WAF.

- 135 -

Appendix 10

The Analysis of Inorganic Constituents in Petroleum Coke in Freshwater

- 136 -

Appendix 10.1

Analytical Method Flowchart for the Analysis of As, Cu, Fe, Ni, Se, V and S in Freshwater Analyzed by ICP-AES

Prepare quality control (QC) samples concurrent with the analyses of test samples as follows: Prepare matrix fortification samples by spiking the requisite volume(s) of the appropriate combined and/or individual element stock solution(s) directly into freshwater. Perform fortifications with calibrated micropipettors and graduated centrifuge tubes. Bring to final volume with freshwater.

The matrix blank consists of unfortified freshwater.

1

Partially fill a graduated centrifuge tube with each sample. Using a calibrated micropipettor, fortify each QC and test sample with 200 µL of concentrated nitric acid. Bring to final volume with the sample. For samples not requiring further dilution into the calibration range of the ICP-AES methodology, submit for ICP-AES analysis.

 \downarrow

For those samples requiring dilution into the calibration range of the ICP-AES methodology, perform dilutions using graduated centrifuge tubes, calibrated micropipettor(s), and 2% (v/v) nitric acid in freshwater solution. Mix dilutions well and transfer into separate, labeled, 15-mL centrifuge tubes. Submit for ICP-AES analysis.

- 137 -

Appendix 10.2

Typical ICP-AES Operational Parameters for the Analysis of As, Cu, Fe, Ni, Se, V and S in Freshwater

Instrument: Perkin-Elmer Optima 3000 DV Inductively Coupled Plasma

Atomic Emission Spectrometer (ICP-AES)

Sample Introduction System: Cetac U-5000AT⁺ Ultrasonic Nebulizer

Analytical Wavelengths: As 188.979 nm

Cu 224.700 nm
Fe 239.562 nm
Ni 231.604 nm
Se 196.026 nm
S 180.669 nm
V 292.402 nm

Plasma: Plasma Gas Flow: 15 L/min Ar

Auxiliary Gas Flow: 0.5 L/min Ar Nebulizer Gas Flow: 0.7 L/min Ar RF Power: 1300 W

Pump: Sample Flow Rate: 2.00 mL/min

Sample Flush Time: 15 sec
Wash Rate: 2.00 mL/min
Wash Time: 60 sec

Wash Frequency: Between Samples

Spectrometer: View Mode: Axial

Read Delay: 60 sec

Read Time: Min: 10.000 sec Max: 20.000 sec

Read Replicates: 3

Peak Algorithm: Peak Area

Points/Peak: 3
Background Correction: 2-Point

- 138 -

Appendix 10.3

Analytical Stocks and Standards Preparation

A combined stock solution containing the seven elements of interest was prepared either directly from the procured Spex primary standards, or from single element secondary stock preparations. The combined stock solutions were used to prepare external calibration standards and matrix fortification samples. Volumetric flasks and calibrated micropipettors were used for all preparations. Preparation details for the stocks were as follows:

A single component secondary stock for vanadium was first prepared from a 10x dilution of the 1.00 mg/mL V primary standard using 2% (v/v) nitric acid in reagent grade water (2:98 HNO₃: H₂O) dilution solvent. The nominal concentration of the resultant vanadium stock was 0.100 mg V/mL. A combined secondary stock in $2:98 \text{ HNO}_3$: H₂O dilution solvent was then prepared as follows:

	Primary		-	Secondary
	Stock		Final	Stock
	Concentration	Aliquot	Volume	Concentration
<u>Element</u>	(mg/mL)	<u>(mL)</u>	<u>(mL)</u>	(mg/L)
As	1.00	1.00		10.0
Cu	1.00	1.00		10.0
Fe	1.00	0.500	100	5.00
Ni	1.00	0.500		5.00
Se	1.00	10.0		100
V	0.100	0.200		0.200

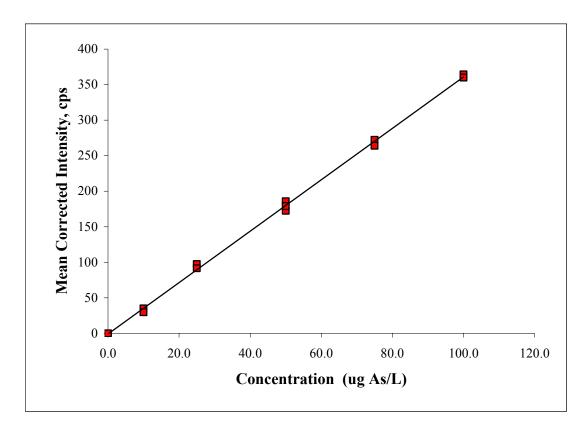
This combined secondary stock solution was used to prepare a set of calibration standards, each in 2% (v/v) nitric acid in Wildlife International, Ltd. freshwater (2:98 HNO₃: FW) dilution solvent and diluted to a 100-mL final volume, using the following dilution scheme:

Stock Aliquot:	0.100 mL	0.250 mL	0.500 mL	0.750 mL	1.00 mL
	Standard	Standard	Standard	Standard	Standard
	Concentration	Concentration	Concentration	Concentration	Concentration
Element	$(\mu g/L)$				
As	10.0	25.0	50.0	75.0	100
Cu	10.0	25.0	50.0	75.0	100
Fe	5.00	12.5	25.0	37.5	50.0
Ni	5.00	12.5	25.0	37.5	50.0
Se	100	250	500	750	1000
V	0.200	0.500	1.00	1.50	2.00

- 139 -

Appendix 10.3 (Continued)

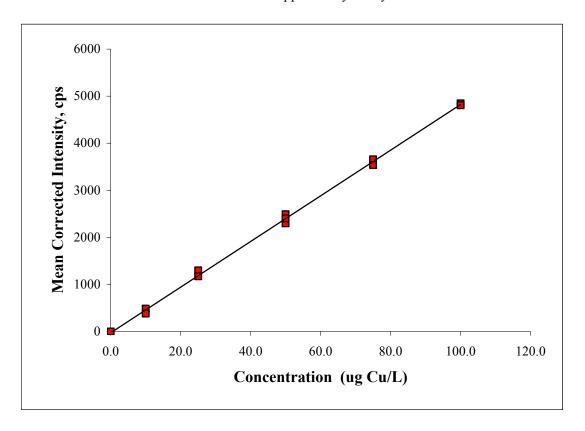
Analytical Stocks and Standards Preparation


A separate set of sulfur calibration standards, each in 2:98 HNO₃: FW dilution solvent, were prepared from the 10.0-mg S/mL primary standard using the following dilution scheme:

Stock		Final	Standard
Concentration	Aliquot	Volume	Concentration
(mg S/mL)	<u>(μL)</u>	<u>(mL)</u>	<u>(mg S/L)</u>
10.0	50.0	100	5.00
10.0	100	100	10.0
10.0	250	100	25.0
10.0	350	100	35.0
10.0	500	100	50.0

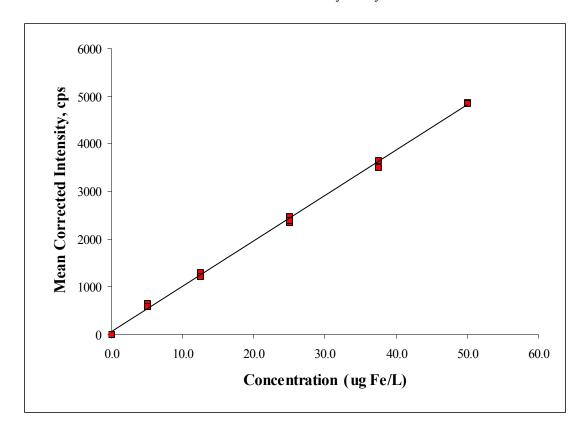
The 2:98 HNO₃: FW dilution solvent, prepared concurrently with these calibration standards was also utilized as a calibration/reagent blank.

- 140 -


Appendix 10.4Calibration Curve for Arsenic Analyzed by ICP-AES

Slope = 3.6156; Y-intercept = -0.80539; $R^2 = 0.9987$

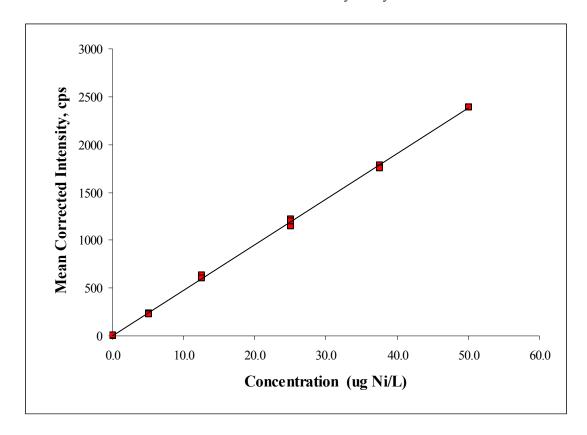
- 141 -


Appendix 10.5 Calibration Curve for Copper Analyzed by ICP-AES

Slope = 48.532; Y-intercept = -28.109; $R^2 = 0.9986$

- 142 -

Appendix 10.6Calibration Curve for Iron Analyzed by ICP-AES

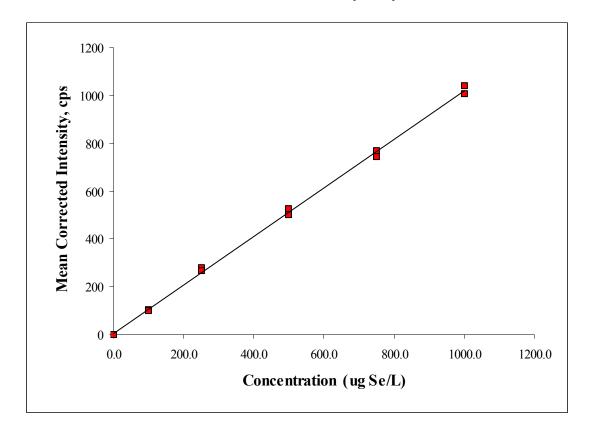


Slope = 95.175; Y-intercept = 56.080; $R^2 = 0.9984$

- 143 -

Appendix 10.7

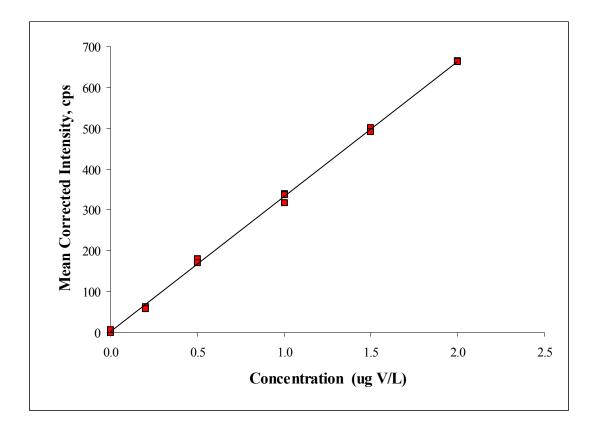
Calibration Curve for Nickel Analyzed by ICP-AES



Slope = 47.595; Y-intercept = 4.5257; $R^2 = 0.9993$

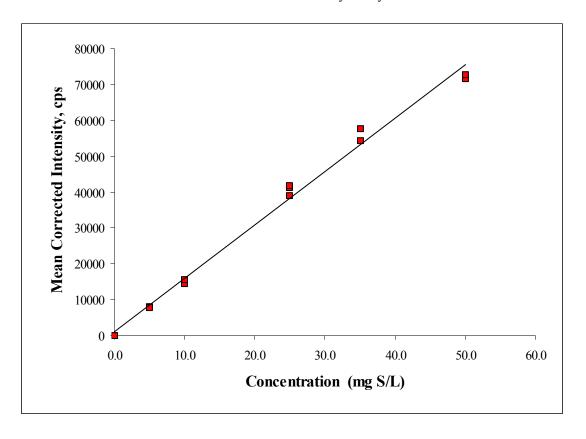
- 144 -

Appendix 10.8


Calibration Curve for Selenium Analyzed by ICP-AES

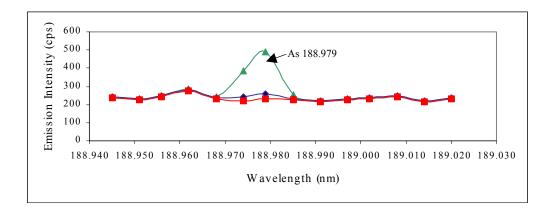
Slope = 1.0150; Y-intercept = 4.4766; $R^2 = 0.9986$

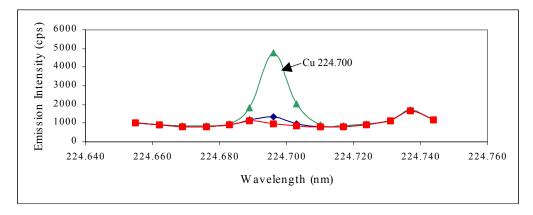
- 145 -

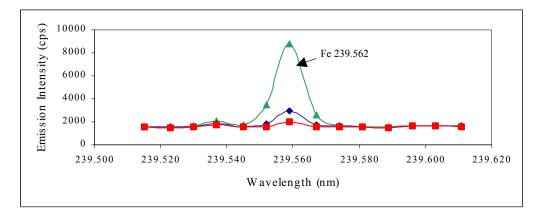

Appendix 10.9Calibration Curve for Vanadium Analyzed by ICP-AES

Slope = 330.20; Y-intercept = 3.0976; $R^2 = 0.9989$

- 146 -

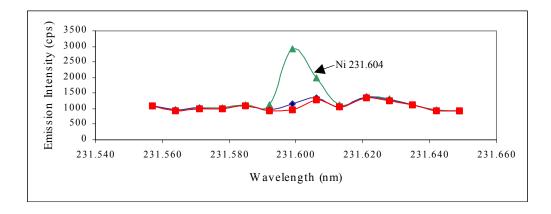

Appendix 10.10Calibration Curve for Sulfur Analyzed by ICP-AES

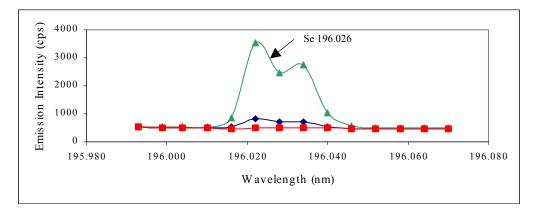


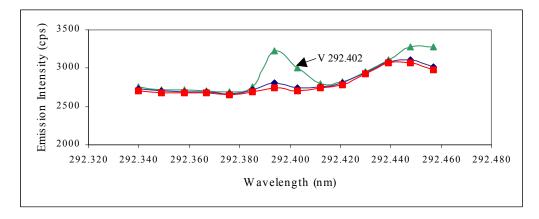

Slope = 1487.8; Y-intercept = 1168.5; $R^2 = 0.9915$

Appendix 10.11

Representative Emission Spectra for Arsenic (top), Copper (middle) and Iron (bottom) in Low- and High-Level Calibration Standards Prepared in Freshwater and Analyzed by ICP-AES

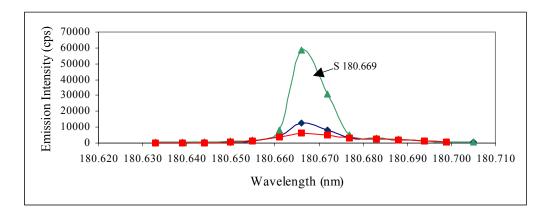



Squares = freshwater calibration blank (I.D.: 472A-112, 113-M-0); Diamonds = low-level standard (I.D.: 472A-112,113-M-1); Triangles = high-level standard (I.D.: 472A-112,113-M-5). Nominal concentrations for As, Cu and Fe = 10.0, 10.0 and 5.00 µg/L and 100, 100 and 50.0 µg/L, in the low- and high-level standards, respectively.


- 148 -

Appendix 10.12

Representative Emission Spectra for Nickel (top), Selenium (middle) and Vanadium (bottom) in Low- and High-Level Calibration Standards Prepared in Freshwater and Analyzed by ICP-AES.



Squares = freshwater calibration blank (I.D.: 472A-112, 113-M-0); Diamonds = low-level standard (I.D.: 472A-112,113-M-1); Triangles = high-level standard (I.D.: 472A-112,113-M-5). Nominal concentrations for N, Se and V = 5.00, 100 and 0.200 µg/L and 50.0, 1000 and 2.00 µg/L, in the low- and high-level standards, respectively.

- 149 -

Appendix 10.13

Representative Emission Spectra for Sulfur in Low- and High-Level Calibration Standards
Prepared in Freshwater and Analyzed by ICP-AES.

Squares = freshwater calibration blank (I.D.: 472A-112,113-S-0); Diamonds = low-level standard (I.D.: 472A-112,113-S-1); Triangles = high-level standard (I.D.: 472A-112,113-S-5). Nominal concentrations for S = 5.00 and 50.0 mg/L in the low- and high-level standards, respectively.

- 150 -

Appendix 10.14

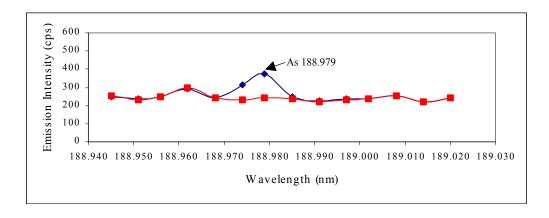
Example Calculations

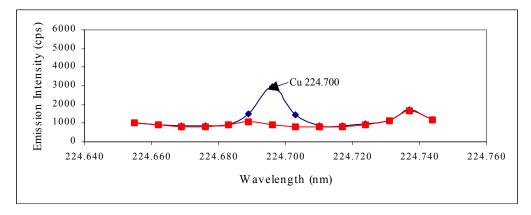
The analytical result and percent recovery for sample number 472A-112-MAS-1 for vanadium, nominal concentration of 1.00 µg/L in freshwater, were calculated using the following equation:

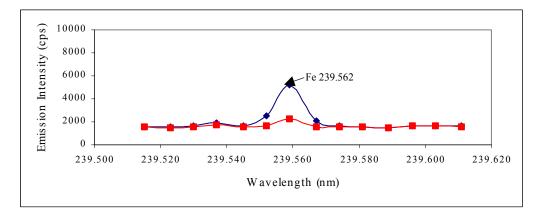
$$Vanadium \ (\mu g/L) \ in \ sample = \frac{Mean \ Corrected \ Intensity \ - \ (Y-intercept)}{Slope} \ \ X \ \ Dilution \ factor$$

Mean Corrected Intensity = 359 Y-intercept = 3.0976 Slope = 330.20 Dilution Factor = 1.02

Concentration of Vanadium (
$$\mu$$
g/L) in sample = $\frac{359 - 3.0976}{330.20}$ X 1.02

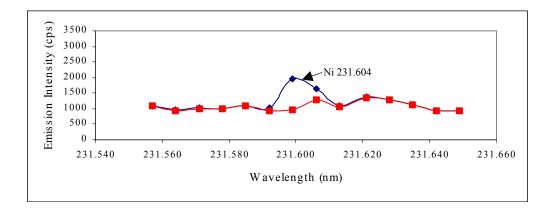

Concentration of Vanadium in sample (μ g/L) = 1.10

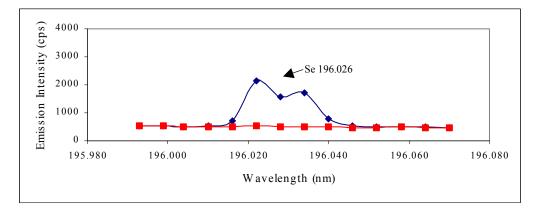

Percent of nominal concentration =
$$\frac{1.10 \; (\mu g/L)}{1.00 \; (\mu g/L)} \, X \; 100$$

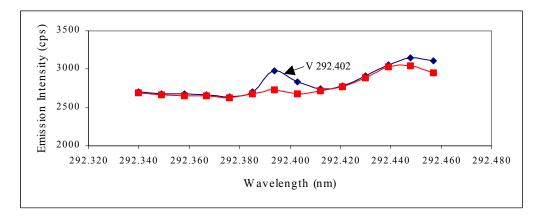

Percent of nominal concentration = 110%

Appendix 10.15

Emission Spectra for Arsenic (top), Copper (middle) and Iron (bottom) in Matrix Blank and Matrix Fortification Samples Prepared in Freshwater and Analyzed by ICP-AES.

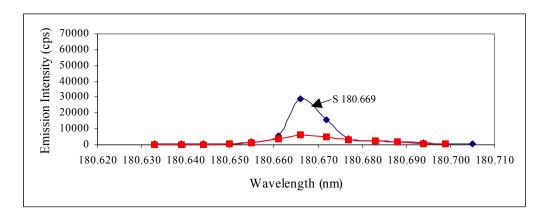





Squares = freshwater matrix blank (I.D.: 472A-112-MAB-1, D_f = 1.02x); Diamonds = matrix fortification (I.D.: 472A-112-MAS-1, D_f = 1.02x). Nominal concentrations for As, Cu and Fe in matrix fortification sample = 50.0, 50.0 and 25.0 μ g/L, respectively.

Appendix 10.16

Emission Spectra for Nickel (top), Selenium (middle) and Vanadium (bottom) in Matrix Blank and Matrix Fortification Samples Prepared in Freshwater and Analyzed by ICP-AES.

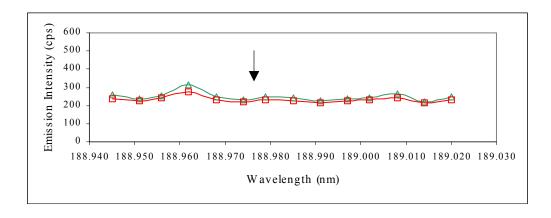


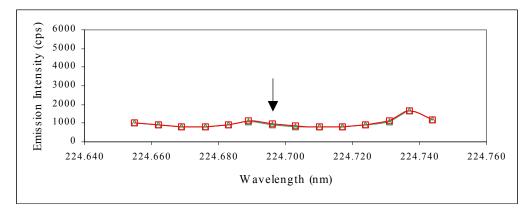
Squares = freshwater matrix blank (I.D.: 472A-112-MAB-1, D_f = 1.02x); Diamonds = matrix fortification (I.D.: 472A-112-MAS-1, D_f = 1.02x). Nominal concentrations for Ni, Se and V in matrix fortification sample = 25.0, 500 and 1.00 μ g/L, respectively.

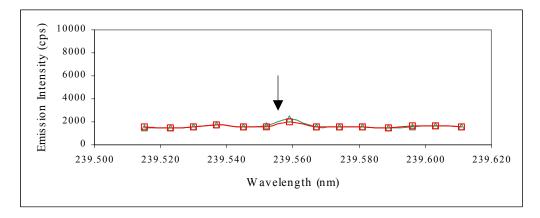
- 153 -

Appendix 10.17

Emission Spectra for Sulfur in Matrix Blank and Matrix Fortification Samples Prepared in Freshwater and Analyzed by ICP-AES.

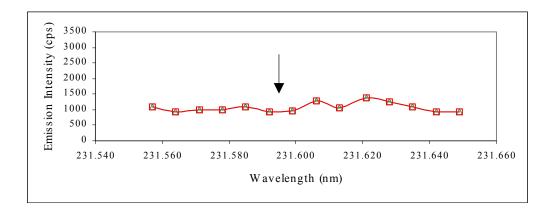


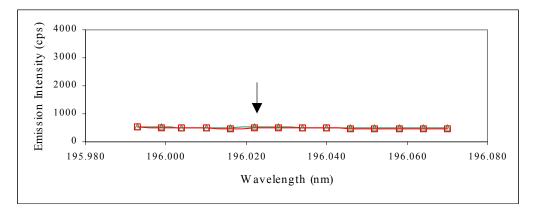

Squares = freshwater matrix blank (I.D.: 472A-112-MAB-1, D_f = 1.02x); Diamonds = matrix fortification (I.D.: 472A-112-MAS-1, D_f = 1.02x). Nom inal concentrations for S in matrix fortification sample = 20.0 mg/L.

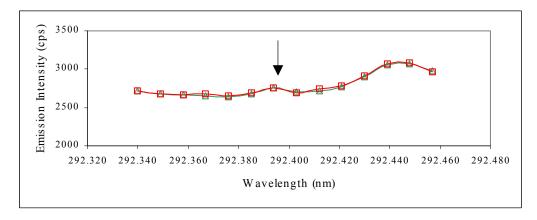

- 154 -

Appendix 10.18

Representative Emission Spectra of Arsenic (top), Copper (middle) and Iron (bottom) in a Test Sample Analyzed by ICP-AES.

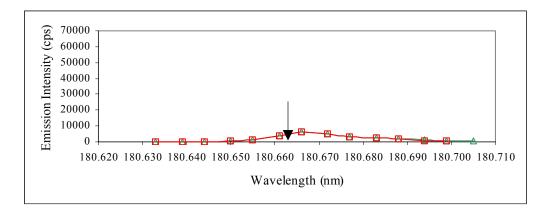



Squares = freshwater calibration blank (I.D.: 472A-112,113-M-0); Triangles = 0 hour WAF test sample (472A-112-4, 1000 mg/L petroleum coke nominal concentration). The arrows indicate expected wavelength for each element response.


- 155 -

Appendix 10.19

Representative Emission Spectra of Nickel (top), Selenium (middle) and Vanadium (bottom) in a Test Sample Analyzed by ICP-AES.



Squares = freshwater calibration blank (I.D.: 472A-112,113-M-0); Triangles = 0 hour WAF test sample (472A-112-4, 1000 mg/L petroleum coke nominal concentration). The arrows indicate expected wavelength for each element response.

- 156 -

Appendix 10.20

Representative Emission Spectra of Sulfur in a Test Sample Analyzed by ICP-AES.

Squares = freshwater m atrix blank (I.D.: 472A-112-MAB-1, D $_{\rm f}$ = 1.02x); Triangles = 0 hour W AF test sample (472A-112-4, 1000 mg/L petroleum coke nominal concentration). The arrow indicates the expected wavelength for sulfur response above background levels.

- 157 -

Appendix 11

Personnel Involved in the Study

The following key Wildlife International, Ltd. personnd were involved in the conduct or management of this study:

1.	
2.	
3.	
4.	
5.	
6.	

- 158 -

Appendix 12

Report Amendment

1. Original Report: Title Page

Amended Report: The amended report date was added. The total number of

pages was changed from 146 to 159

Reason: To indicate that the report was amended and note change in

pagination.

2. Original Report: Page 2

Amended Report: The amended report date was added and new signatures and

dates were added.

Reason: To show the amended report date and to provide new

signatures and dates for the amended report.

3. Original Report: Page 3

Amended Report: The audit dates fo r the am ended report were added and a

new signature and date were added.

Reason: To show the amended report audit dates and

to provide a new signature and date for the

amended report.

4. Original Report: Page 4

Amended Report: New signatures and dates were added.

Reason: To provide new signatures and dates for the amended report.

5. Original Report: Page 8

Amended Report: The Table of Contents was updated to show the addition of

Appendix 3, renum ber all appendices from Appendix 3 through the end of the report and added the Report

Amendment appendix (Appendix 12).

Reason: The Sponsor requested that Appendix 3 be addedo the final

report.

6. Original Report: Pages 14-18 and 20

Amended Report: The appendix reference numbers were modified.

Reason: The Sponsor requested that Appendix 3 be addedo the final

report, therefore, all appendices thereafter had to be

renumbered.

7. Original Report: Page 78

Amended Report: Appendix 3 was added to the report.

Reason: The Sponsor requested that Appendix 3 be added to the final

report.

- 159 -

Appendix 12 (continued)

Report Amendment

8.

Original Report:

Pages 78-146

Amended Report:

Appendix 3 was added to the report, therefore all appendices

thereafter were renumbered.

Reason:

The Sponsor requested that Appendix 3 be added to the final

report.

AMENDMENT SIGNATURES:

10 April 2007
Date

10 April 2007
Date

Date 4/10/2007